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Recently the author has obtained, for the first time, logarithmic stability estimates and
a convergent numerical method for thermoacoustic tomography with an arbitrary elliptic
operator [1], i.e. for the equation

n

Uy = L(z)u:= Z a;; ()02, u+ Z b () Opu+a(z)u, (z,t) € R® x (0,T), (1)
u(z,0) = f(z),u (2,0) =0, (2)

where L (x) is uniformly elliptic operator in R™. This was done for both complete and in-
complete data collection cases. Results of [1] will be presented in the talk.

Thermoacoustic tomography arises in medical imaging. From the mathematical stand-
point this problem can be formulated as follows. Let € C R™ be a bounded domain,
Sy = 00 x (0,T). Suppose that f(z) = 0 and L(z) = A outside of {2.Determine the
function f (x) for z € 2 assuming that the function ¢ (z,t) is known,

ulsp = (2,1). (3)

Solving equation (1) for (z,t) € (R™\ ) x (0,7) with initial conditions u (x,0) =
g (2,0) = 0,z € R™\Q and boundary condition (3), one can uniquely and stably deter-
mine the Neumann boundary condition 1 (z, 1),

O |sp= 1 (x,1). (4)

In the incomplete data collection case in [1] Q = {z; > 0}, S = {x; = 0} x (0,7") . Consid-
ering even extension u (z, —t) := wu (x,t),t € (0,7, one obtains equation (1) in
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QF = Q x (=T, T) with both Dirichlet and Neumann boundary conditions (3), (4) given
at Sz =0Q x (-T,T).

In the works [2-8] in 1991-2008 the author and his coauthors have Lipschitz stability
estimates for the case when

L(x,t)u=c*(x) Au—i—ij (z,t) Op,u+a(z,t) u. (5)

J=1

In particular, hyperbolic inequalities with the lateral Cauchy data at Sjji were considered in
[3,5]

luw — & () Au| < A(|Vapul + |u| + g (z,t)]), A = const > 0, (z,t) € Q7. (6)

These estimates were

lulls g2y < € (Nl s + 1laqsy + lliags) ) - ™

Hence, the trace theorem implies with a different constant C'

It (2, 0) oy = 1 zagey < € (Il s + 180y s2) + 190 a(as))

In addition, convergence of the quasi-reversibility method was proven [2,5,7]. Numerical
results have consistently demonstrated a high degree of stability of this method [3,7] with up
to 50% noise in the data [8]. The key tool of works [2-8] is an idea connected with Carleman
estimates. Although in some works [2,6] the assumption was that ¢ = 1 in (5), (6), it is clear
from the first publications [2,3] that as soon as the principal part of the hyperbolic operator
is such that the Carleman estimate holds, the method of [2] works. This thought is reflected
in the proof of Theorem 3.4.8 of the book [9].

However, results of [2-8] are proven under a restrictive condition on the coefficient ¢ (z),

(x =20,V (c?(2))) +a >0,z € Q for an a = const. > 0 (8)

for a point xy. Clearly c¢(x) = 1 satisfies (8). In particular, Lipschitz stability (7) for
inequality (6) with condition (8) was obtained in [5] and for the equation (5) with condition
(8) in [7].

Condition (8) was imposed because in the hyperbolic case the Carleman estimate is
known only for the operator 92 — ¢* (x) A with ¢ (z) satisfying (8). Other known results
[10,11], which were published later than [2], impose the non-trapping condition on ¢ (z) and
do not work for hyperbolic PDEs with lower order terms as in (5). Since the non-trapping
condition cannot be directly analytically verified, then it is equally restrictive with condition
(8). In addition, a small variation of (8) guarantees non-trapping, see formula (3.24) in [12].

Prior to [1] both stability estimates and convergent numerical methods were not pub-
lished neither for the case of an arbitrary elliptic operator in (1) nor for the case when no
restrictive conditions are imposed on ¢ (z) in (5). Also, convergent numerical methods were
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not developed for the case of incomplete data collection even with ¢ (x) = 1. Although in [1]
T = oo, it was shown there that this is not a serious restriction for many applications (see
second and third Remarks 3.1 in [1]).

References

1. M.V. Klibanov, On an inverse hyperbolic problem, preprint available online at

http://www.ma.utexas.edu/mp_arc/, posting date December 30, 2011.

2. M.V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional po-
tential inverse scattering problem and stability for the hyperbolic Cauchy problem with time
dependent data, Inverse Problems, 7, 577-596, 1991.

3. M. Kazemi and M.V. Klibanov, Stability estimates for ill-posed Cauchy problem
involving hyperbolic equation and inequalities, Applicable Analysis, 50, 93-102, 1993.

4. M.V. Klibanov and Rakesh, Numerical solution of a timelike Cauchy problem for the
wave equation, Math. Meth. in Appl. Sci., 15, 559-570, 1992.

5. M.V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems
and Numerical Applications, VSP, Utrecht, The Netherlands, 2004.

6. M.V. Klibanov, Lipschitz stability for hyperbolic inequalities in octants with the
lateral Caucby data and refocusing in time reversal, J. Inverse and Ill-Posed Problems, 13,
353-363, 2005.

7. C. Clason and M.V. Klibanov, The quasi-reversibility method for thermoacoustic
tomography in a heterogeneous medim, SIAM J. Sci. Comp., 30, 1-23, 2007.

8. M.V. Klibanov, A.V. Kuzhuget, S.I. Kabanikhin and D.V. Nechaev, A new version of
the quasi-reversibility method for the thermoacoustic tomography and a coefficient inverse
problem, Applicable Analysis, 87, 1227-1254, 2008.

9. V. Isakov, Inverse Problems for Partial Differential Equations, Second Edition, Springer,
New York, 2006.

10. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for observation
control and stabilization of waves from the boundary, SIAM J. Contr. Opt., 30, 1024-1065,
1992.

11. P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed,
Inverse Problems, 25, 075011, 2009.

12. V.G. Romanov, Inverse Problems of Mathematical Physics, VNU Press, Utrecht, The
Netherlands, 1986.



