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Since Dupire published his celebrated paper [1] in 1994, his local volatility model has
become one of the most extensively used models in derivatives pricing across all asset
classes. In the case of an equity stock or index S, the price dynamics in the local volatility
model under the risk neutral measure are given as

dSt = (rt − qt)St dt+ σ(t, St)St dWt (1)

where Wt is a Brownian motion, rt is the risk free interest rate and qt is a continuous
dividend yield at time t. The squared local volatility σ2 gives the instantaneous variance of
the logarithm of S as a deterministic function of the time t and the spot value St. Dupire
showed that under the dynamics (1), the prices of call options C(T,K) of time to maturity
T , strike K and a given value of the spot S0 at time t = 0, can be related through the
following parabolic partial differential equation,

∂TC(T,K) =
1

2
σ2(T,K)K2∂KKC(T,K)− qTC(T,K)− (rT − qT )K∂KC(T,K)

(T,K) ∈ R+× R+,

C(0, K) = (S0 −K)+, C(T, 0) = S0 e
−

∫
T

0
qtdt, C(T,∞) = 0

(2)

from which the volatility function can be expressed in terms of option prices as

σ2(T,K) =
∂TC(T,K) + qTC(T,K) + (rT − qT )K∂KC(T,K)

1
2
K2∂KKC(T,K)

. (3)

The model’s popularity stems from this simple relation between option prices and the
volatility function: given a surface of option prices C : (T,K) → R+ that is once differ-
entiable in T and twice differentiable in K, the function σ can be retrieved from a mere
differentiation of C. An appealing consequence of that observation is of course that with
σ chosen according to (3), the partial differential equation (2) tells us that an asset with
the dynamics (1) will match all option prices C(T,K).

The simplicity of the expression (3), however, is somewhat illusive. In practice, market
prices on options are not given as continuous, smooth surfaces, but as discrete values that
can not obviously be seen to be sampled from a differentiable function. So even though the
equation (3) gives a seemingly easy way of constructing the function σ from option prices,
this is difficult in real life where we can only observe option prices at a finite number of
maturity-strike pairs.

In this talk we will illustrate that this inverse problem of choosing a local volatility function
that makes the model replicate observable market prices can be succesfully handled as an
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Figure 1: Local volatility for OMXS30 at 17:05 pm, August 14, 2012.

optimal control problem. A general optimal control problem for a function constrained to
follow Dupire’s equation on an interval [0, T̄ ] can be stated as

min
σ∈Σ

∫ T̄

0

h(T, C(T )) dT

subject to: C, σ satisfy (2),

(4)

where Σ is some space of functions on [0, T̄ ]× R+. If h is chosen as a distance between C

and some observed market prices C̄, then a volatility function σ that satisfies (4) can be
seen as an optimal control that “steers” the model option prices C as close as possible to
observed market data under the constraint that C satisfies Dupire’s equation (2).

The algorithms we develop are based on the techniques from [2] for solving optimal control
problems of the type (4) through a regularized version of the corresponding Hamiltonian
system. In order to get satisfactory results when working with actual market data, we will
also use techniques based on the use of so called affine stochastic volatility models [3] in
order to calculate a good initial guess for the local volatility σ.

In Figure 1 we give an example of a local volatility model obtained with our method for
the OMXS30 stock index as of August 14, 2012. In our presentation, we will also show
how well the prices C resulting from a solution to (2) with our local volatility function σ

replicate the market prices we use as data.

2



References

[1] Bruno Dupire. Pricing with a smile. Risk, pages 18–20, January 1994.

[2] Mattias Sandberg and Anders Szepessy. Convergence rates of symplectic Pontryagin
approximations in optimal control theory. ESAIM: Mathematical Modelling and Nu-

merical Analysis, 40:149–173, January 2006.

[3] Darrel Duffie, Jun Pan, and Kenneth Singleton. Transform Analysis and Asset Pricing
for Affine Jump-Diffusions. Econometrica, 68(6):1343–1376, November 2000.

3


