Acceleration of the modified alternating iterative algorithm by the conjugate gradient method for the Cauchy problem for the Helmholtz equation

F. Berntsson, V.Kozlov, L. Mpinganzima, and B.O. Turesson Department of Mathematics, Linköping University

Let Ω be a bounded domain in \mathbb{R}^n with a Lipschitz boundary Γ divided into two parts Γ_0 and Γ_1 which do not intersect one another and have a common Lipschitz boundary. We consider the following Cauchy problem for the Helmholtz equation

$$\begin{cases} \Delta u + k^2 u = 0 & \text{ in } \Omega, \\ u = f & \text{ on } \Gamma_0, \\ \partial_{\nu} u = g & \text{ on } \Gamma_0, \end{cases}$$

where k is the wave number, ∂_{ν} denotes the outward normal derivative, and f and g are specified Cauchy data on Γ_0 . This problem is ill-posed.

In [3], we developed a modification of the alterating iterative algorithm that we used to solve this problem. This modification is based on the alternating iterative schemes suggested in [1] and [2] since the latter diverge for the large constant k^2 in the Helmholtz equation. The numerical experiments confirmed that the proposed modification works well but it requires a big numer of iteration. In the current work, we present an acceleration of the modified alternating algorithm using the conjugate gradient method and present some numerical results.

References

- Kozlov, V., Maz'ya, V. On iterative procedures for solving ill-posed boundary value problems that preserve differential equations. (Russian). Algebra I Analiz. 1, 5(1989). 144-170; translation in Leningrad Math. J. 1, 5(1990), 1207-1228.
- [2] Kozlov, V., Maz'ya, V. and Fomin, A. An iterative method for solving the Cauchy problem for elliptic equations. (Russian). Zh. Vychisl. Mat. i Mat. Fiz. 31, 1(1991), 64-74; translation in U.S.S.R. Comput. Math. and Math. Phys. 31,1(1991), 45-52.
- [3] Lydie, Mpinganzima, An alternating iterative procedure for the Cauchy problem for the Helmholtz equation, Linköping Studies in Science and Technology, Thesis, No. 1530, 2012.