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U. Hämarik, R. Palm, T. Raus

University of Tartu, Estonia
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Problem and Tikhonov method

We consider linear ill-posed problems

Ax = y∗, y∗ ∈ R(A),

where A : X → Y is a linear continuous operator between Hilbert
spaces. The range R(A) may be non-closed and the kernel N (A) may
be non-trivial.

Assume that instead of exact data y∗ only its approximation y is
available.

For approximation of the minimum norm solution x∗ of the problem
Ax = y∗ we use the Tikhonov regularization method

xα = (αI + A∗A)−1A∗y .
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Other methods

Iterated Tikhonov method: take x0 = x0;α ∈ X and compute
xα := xm;α iteratively from the equations

αxn;α + A∗Axn;α = αxn−1;α + A∗y (n = 1, ...,m). (1)

Extrapolated Tikhonov method: take Tikhonov approximations xα1 ,
. . . , xαm with different parameters α1, . . . , αm and compute

xα1,...,αm =

m
∑

i=1

dixαi
, di =

m
∏

j=1,j 6=i

(1− αi/αj )
−1. (2)

We use xα := xα1,...,αm with αn = αr (m+1)/2−n , n = 1, ...,m; r > 1.

If A = A∗ ≥ 0 then Lavrentiev method xα = (αI +A)−1y may also be
used.

Landweber iteration method

xn = xn−1 − µA∗(Axn − y), µ ∈ (0, 1/‖A∗A‖) , n = 1, 2, . . .
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Choice of the regularization parameter is a compromize

between accuracy and stability

Regularization parameter: α > 0 in Tikhonov method and in its iter-
ated and extrapolated versions (for these 3
methods common name T-method is used)
n ∈ N in Landweber method

Conflict of interests: Approximation vs Stability

α small, n large α large, n small

good approximation bad approximation
bad stability good stability
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Information about noise level

We consider three cases of knowledge about noise level for ‖y − y∗‖:
Case 1: exact noise level δ: ‖y − y∗‖ ≤ δ.

Case 2: no information about ‖y − y∗‖.
Case 3: approximate noise level: δ is given but it is not known
whether the inequality ‖y − y∗‖ ≤ δ holds or not. For example, it
may be known that with high probability δ/‖y − y∗‖ ∈ [1/10, 10].
This very useful information should be used for choice of α = α(δ) in
T-method and n = n(δ) in Landweber method.
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General remarks on rules for choice of the regularization

parameters α and n

Rules for the Case 1 (discrepancy principle, etc.) need exact noise
level: rules fail for very small underestimation of the noise level and
give much large error ‖xα − x∗‖ and ‖xn − x∗‖ than for optimal
parameters already for 10% overestimation.

Heuristic rules for the Case 2 (L-curve, GCV etc) do not guarantee
the convergence xα → x∗ and xn → x∗ for ‖y − y∗‖ → 0.

Our rules for the Case 3 guarantee xα → x∗ and xn → x∗ as δ → 0, if
limδ→0

‖y−y∗‖
δ ≤ const.

In the following we consider rules for the choice of the regularization
parameters if an estimate δ for the noise level ‖y − y∗‖ and an estimate
for ρ := δ/‖y − y∗‖ about the accuracy of the estimate δ are given.
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Rules for exact or very slightly overestimated noise level

Case 1) ‖y − y∗‖ ≤ δ where ρ := δ/‖y − y∗‖ is 1 or only slightly larger.
Discrepancy principle (D) chooses a constant C ≥ 1 and in the
T-method the parameter α = αD as the solution of the equation
‖Axα − y‖ = Cδ, in the Landweber method the stopping index nD as the
first n with ‖rn‖ ≤ Cδ, rn := Axn − y .
Monotone error rule (ME-rule) chooses in the T-method the parameter
α = αME as the solution of the equation
‖Bα(Axα − y)‖2/‖B2

α(Axα − y)‖ = δ, Bα :=
√
α(αI + AA∗)−1/2, and in

the Landweber method the stopping index nME as the first n with
(rn + rn+1, rn)/(2‖rn‖) ≤ δ.
The name ME-rule is justified by the property d

dα‖xα − x∗‖2 ≥ 0 for each
α ∈ [αME,∞) in the T-method and property ‖xn − x∗‖ ≤ ‖xn−1 − x∗‖ for
all n = 1, 2, . . . , nME in the Landweber method. Extensive numerical
experiments suggest to use the post-estimated parameters of the
MEe-rule αMEe = αME/2.3 and nMEe = round(2.3nME), instead the
parameters αME and nME, respectively. In average of extensive numerical
experiments ‖xαME

− x∗‖ ≈ 1.2‖xαMEe
− x∗‖
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Family of rules for T-method for approximate noise level

The estimate δ of the noise level ‖y − y∗‖ is given, e.g.
ρ := δ/‖y − y∗‖ ∈ [0.3, 10]. We propose family of rules. Fix q, l , k such
that 2q, 2k , 2l ∈ N, l ≥ 0, k ≥ l/q and q ≤ q <∞, where
q = (2m + 1)/(m + 1) for the T-method (q = 3/2 for the Tikhonov
method) and q = 2 for the Landweber method.
R-rule for T-method Choose α = α(δ) as the largest solution of

d(α | q, l , k) := κ(α)‖Dk
αBα(Axα − y)‖q/(q−1)

‖D l
αB

2q−2
α (Axα − y)‖1/(q−1)

= bδ,

where Bα =
√
α(αI + AA∗)−1/2, Dα = α−1AA∗B2

α,

b ≈
(

3

2

)
3
2 kk

(k + 3/2)k+3/2

(

kk(l + 3/2)l+3/2

l l(k + 3/2)k+3/2

)
1

q−1

,

κ(α) = 1, if k = l/q, and κ(α) = (1 + α‖A‖−2)
kq−l+q/2

q−1 , if k > l/q. Note
that if k > l/q, then κ(α) → 1, as α→ 0.
Denote this rule by R(q, l , k).
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Examples of this family of rules

Modified discrepancy principle (Raus 1985, Gfrerer 1987): q = 3/2,
l = k = 0

Monotone error rule (Tautenhahn, Hämarik 1999): q = 2, l = k = 0

Rule R1 (Raus 1992): q = 3/2, k = l > 0

Balancing principle (Mathé, Pereverzev 2003) can be considered as an
approximate variant of rule R1 with k = 1/2.
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Family of rules for the Lavrentiev method

Fix the parameters q, k : 4/3 ≤ q <∞, k ≥ 0, 2k ∈ N, 3q ∈ N. Let the
constant b > 1 if k = 0 and b > 0 if k > 0. Choose the regularization
parameter α = α(δ) as the largest solution of the equation

d(α | q, k) := κα‖Dk
αBα(Axα − y)‖q/(q−1)

‖B3q/2−1
α (Axα − y)‖1/(q−1)

= bδ,

where Bα = α(αI + A)−1, Dα := A(αI + A)−1 and

κα = (1 + α‖A‖−1)
kq+s0q/2

q−1 , s0 =

{

0, if k = 0,

1, if k > 0.
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Family of rules for the Landweber method

Choose the stopping index n = nR as the first index with

d(n | q, l , k) := κ(n)
‖Dk

n (Axn − y)‖q/(q−1)

‖D l
n(Axn − y)‖1/(q−1)

≤ bδ.

Here Dn := nAA∗ and
κ(n) = 1, if k = l/q, and
κ(n) = (1 + n−1‖A‖−2)(kq−l+q/2)/(q−1) , if k > l/q.
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Existence of solution for family of rules

1 If k > l/q (q ≥ q, l ≥ 0), then for every b = const > 0 there exist a
solution of the equation d(α | q, l , k) = bδ in T-method and a
stopping index satisfying d(n | q, l , k) ≤ bδ in Landweber method,
because limα→∞ d(α | q, l , k) = ∞ and limα→0 d(α | q, l , k) = 0,
limn→∞ d(n | q, l , k) = 0.

2 If k = l/q (q ≥ q, l ≥ 0), b ≥ b0(q, l , k) and ‖y − y∗‖ ≤ δ, then in
the T-method the solution of the equation d(α | q, l , k) = bδ exists
and in Landweber method there exists a stopping index satisfying
d(n | q, l , k) ≤ bδ.

Results of this and the next slide hold, if in formulations the T-method is
replaced by the Lavrentiev method and l = 0.
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Convergence and stability

Convergence. Let q ≤ q <∞, l ≥ 0, k ≥ l/q. Let in T-method the
parameter α = α(δ) be the solution of the equation
d(α | q, l , k) = bδ, b > b0(q, l , k) or in Landweber method parameter
n = n(δ) stopping index from the condition d(n | q, l , k) ≤ bδ. If
‖y − y∗‖ ≤ δ, then ‖xα − x∗‖ → 0 (δ → 0) and ‖xn − x∗‖ → 0
(n → ∞).

Stability (with respect to the inaccuracy of the noise level). Let
q ≤ q <∞, l ≥ 0, k > l/q. Let in the T-method the parameter α(δ)
be the largest solution of the equation d(α | q, l , k) = bδ and in
Landweber method n(δ) be the first index satisfying the condition
d(n | q, l , k) ≤ bδ. If ‖y − y∗‖ / δ ≤ c = const in the process δ → 0,
then ‖xα − x∗‖ → 0 and ‖xn − x∗‖ → 0.

Under information ρ ∈ [1, 5] on the accuracy of the noise level (no
under-estimation) we recommend the Me-rule in the T-method: choose
αMe = min(αMEe, 1.4αR ), where αR is parameter from rule R(3/2, 1/2, 2)
with b = 0.25.
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Quasioptimality in T-method

Let q ≤ q <∞, 0 ≤ l ≤ q/2, l/q ≤ k ≤ l . Let the parameter α(δ) be the
smallest solution of the equation d(α | q, l , k) = bδ. Then the rule is
quasioptimal:

‖xα − x∗‖ ≤ C (b) inf
α≥0

{

‖x+α − x∗‖+ γ∗
δ√
α

}

,

where x+α is the approximate solution with exact right-hand side and
γ∗ = 1/2 for Tikhonov method, γ∗ = m for iterated and extrapolated
variants of Tikhonov method.

Largest solution ⇒ stability
Smallest solution ⇒ quasi-optimality
If the solution is unique, quasi-optimality also holds for the largest
solution. In most of our numerical experiments the solution was
unique.

In the following we choose the largest solution.
The following 3 slides show the behaviour of functions d(α) in the problem
’phillips’ from Hansen’s Regularization Tools.
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Stability of choice α = α(δ) from rule d(α) = δ

10−6 10−5 10−4 10−2 100α(∆
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)
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10∆
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2
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Behavior of functions d(α) in rules d(α) = δ

10−6 10−5 10−4 10−3 10−2 10−1 100
10−8
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10−5
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10∆

‖xα − x∗‖
Discrepancy
R(32 ,

1
2 , 2)
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Perturbed data and presentation of numerical results

Numerical experiments on a large set of test problems (to be
precisized on a later slide).

For perturbed data we took y = y∗ +∆, ‖∆‖ = 0.3, 10−1, . . . , 10−6

with 10 different normally distributed perturbations ∆ generated by
computer.

Problems were solved by Tikhonov method, assuming that the noise
level is δ = ρ‖y − y∗‖. Thus ρ > 1 corresponds to overestimation of
the true noise level, ρ < 1 to underestimation.

To compare the rules, we present averages (over problems,
perturbations ∆ and runs) of error ratios ‖xα − x∗‖/eopt as the
function of the argument ρ, where eopt is minimal error in Tikhonov
method.
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Stability of rule R(q, l , k) increases if k increases
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Stability of rule R(q, l , k) increases if q decreases
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l = 0.5 is recommended (l = 0 is good if δ ≫ ‖y − y∗‖)
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Case 2: heuristic rules not using noise level information

QC-rule for T-method (analog of the quasioptimality criterion Q):
Make the computations using the sequence of parameters αi = r−i ,
i = 0, 1, . . . , r > 1 (for example r = 1.1). Take αQC = αi as the
minimizer of the function ψ(αi ) = (1 + αi‖A‖−2)‖xm,αi

− xm+1,αi
‖ in

the interval [max(mσmin, α), 1], where σmin is the smallest eigenvalue
of the discretized version of the operator A∗A and α is the largest αi ,
for which the value of ψ(αi ) is C = 5 times larger than its value at its
current minimum.

QC-rule for Landweber method: compute ψ(n) := ‖xn − x2n+100‖
for n = 1, 2, ... and take n = nQC as the minimizer of the function
ψ(n) for n ∈ [1,N], where N is the smallest n for which the value of
ψ(n) is C = 20 times larger than its value at its current minimum.

L-curve rule, GCV-rule, Hanke-Raus rule and Brezinski-Rodriguez-
Seatzu rule gave in our numerical experiments not so good results as
rules Q and QC, especially in case of smooth solutions.
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Heuristic rule for Lavrentiev method

We propose to find the parameter α as the minimizer of the function

ḡk(α) = α−2
2k
∑

j=0

cj‖D j/2
α Bα(Axα − y)‖2, cj = j/3 + 1, j = 0, 1, . . . , 2k .

We propose to make computations on the sequence of parameters
αi = r−i , i = 0, 1, . . . , r = 1.1. The parameter αi is found as the
minimizer of the function ḡk(α) in the interval [α, 1], where α is the
largest αi for which the value of ḡk(αi ) is C times larger than its value at
its current minimum. We used the value C = 1.2.
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Hansen’s test problems used in numerical tests.

Set I of test problems, P. C. Hansen’s Regularization Tools.

Nr Problem cond100 selfadj Description
1 baart 5e+17 no (Artificial) Fredholm integral equation

of the first kind
2 deriv2 1e+4 yes Computation of the second derivative
3 foxgood 1e+19 yes A problem that does not satisfy the dis-

crete Picard condition
4 gravity 3e+19 yes A gravity surveying problem
5 heat 2e+38 no Inverse heat equation
6 ilaplace 9e+32 no Inverse Laplace transform
7 phillips 2e+6 yes An example problem by Phillips
8 shaw 5e+18 yes An image reconstruction problem
9 spikes 3e+19 no Test problem whose solution is a pulse

train of spikes
10 wing 1e+20 no Fredholm integral equation with discon-

tinuous solution
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Brezinski-Rodriguez-Seatzu problems

Set II of test problems, Numerical Algorithms 2008, 49, 1–4, pp 85–104.

Nr Problem cond100 selfadj Description
11 gauss 6e+18 yes Test problem with Gauss matrix aij =

√

π
2σ e

−
σ

2(i−j)2 , where σ = 0.01
12 hilbert 4e+19 yes Test problem with Hilbert matrix aij =

1
i+j−1

13 lotkin 2e+21 no Test problem with Lotkin matrix (same
as Hilbert matrix, except a1j = 1)

14 moler 2e+4 yes Test problem with Moler matrix A =
BTB, where bii = 1, bi ,i+1 = 1, and
bij = 0 otherwise

15 pascal 1e+60 yes Test problem with Pascal matrix aij =
(

i+j−2
i−1

)

16 prolate 1e+17 yes Test problem with a symmetric, ill-
conditioned Toeplitz matrix
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Solution vectors for BRS-problems

Description x i
constant 1

linear i
N

quadratic

(

i−⌊N
2 ⌋

⌈N
2 ⌉

)2

sinusoidal sin 2π(i−1)
N

linear+sinusoidal i
N
+ 1

4 sin
2π(i−1)

N

step function







0, if i ≤
⌊

N
2

⌋

1, if i >
⌊

N
2

⌋
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Averages (thick lines) and medians (thin lines) of error

ratios in various rules in dependence of ρ = δ/‖y − y∗‖

0.1 0.2 0.5 1 1.3 2 5 10

1.2

1.5

1.8

D
Me
R(3/2, 1/2, 2),
b = 0.023
R(3/2, 1/2, 8),
b = 0.0023
QC
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Preferences of rules, in dependence of the accuracy of

noise level information ρ = δ/‖y − y∗‖

T-method

If we are sure that ρ ∈ [1, 2], then we recommend the rule Me.
In case ρ ∈ [0.6, 2] we recommend the rule R(3/2, 1/2, 2), b = 0.023.
For even less information about the noise level, we recommend the rule
QC.

Landweber method

If we are sure that ρ ∈ [1, 1.1], then we recommend MEe-rule.
Otherwise we recommend the QC-rule.
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Conclusions

We propose for Tikhonov method and its modifications and for the
methods of Lavrentiev and Landweber a family of rules R(q, l , k) for
approximate noise level, where q ≤ q <∞, l ≥ 0, k ≥ l/q, 2k ,
2l ∈ N, (m + 1)q ∈ N for T-method, 3q ∈ N for Lavrentiev method.

If k > l/q and ‖y−y∗‖
δ ≤ C = const as δ → 0, then we have

‖xα − x∗‖ → 0 (δ → 0).

Certain rules from the family gave in numerical experiments good
results in case of several times over- or underestimated noise level.
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5 U. Hämarik, U. Kangro, R. Palm, T. Raus, U. Tautenhahn. Monotonicity of
error of regularized solution and its use for parameter choice. Submitted to
Inverse Problems in Science and Engineering
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