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Heat Transfer Law

k%-r:: (Tamblent Ty + B: on the boundary

where
T = temperature
Tambient = ambient temperature
k = thermal conductivity
n = outward unit normal to the boundary
B = additional heat ux
= heat transfer coe cient (may be space-, time-, or
temperature-dependent)
=1 for convection; =4 for radiation.
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1. Space-dependent Heat Transfer Coe cient

Consider the inverse problem which requires nding the tesrgiure

T 2 C%%(Q) and the space-dependent heat transfer coe cient
2C(@ , 0, satisfying the heat equation

@T N 2 ety — T A
@t(x,t)— r<T(x;t); (xt)= O;t:]=: Q;
subject to the initial condition
T(x;0)= To(x); x2 ;

the Robin boundary condition

%-Ir;(x;t)+ )T(;t) = B(xt); (xxt)2 @  (0;t5);

and the instant temperature observation at the xed timé 2 (0;t;):
T(xt9= (x); x2@

or, the additional integral time-average temperature obssion
Z,

FO)T(x;t)dt= (X); X2 @ ;

where! 2 L1(0;t;) is given.



Boundary Element Method (BEM)
Using the BEM we reduce the inverse problem to nonlinear tatzum
integral equations for the boundary temperature and the heansfer

coe cient:
Z

%T(x;t) = G(xty;0)To(y)d( y)
Z.2
+ B(; )G(x;t;; )dS( )d
Z.2 °o @
. @G, .. . e .
i @T(, ) @m(x,t,, Y+ ()G(xt; ;) dS()d;
xt)y2@ (0;t;);
where
. H@t ) kx K2
Gt )T e P e )

is the fundamental solution of the heat equation ait is the Heaviside
function.



Numerical Example
Find the temperatureT (x;t) (= x? + 2t) and the space-dependent heat
transfer coe cient(s) 0 0(=1),0 1 (= 1) solving the problem
@T @aT
- . = - . . . - . .t - 1 .
o= g (K=©:1) Ot =1;
T(x;0)= x?% x2[0;1];

%I(O;th oT(O;t) =2t t2(0;1);

@T . . 208 = . 2
L TN =2t+3; t2 (1),

and the additionall% noisy measurement conditions
TO;t%=2t" 1:.01;, T@Q;t9=@2+21t% 1:.0%

or

Z, z tf
TO;t)dt=1 1.0, T(L;t)dt=2 1.01
0 0

f

Using the BEM withN = Ng = 40 elements, in the latter case we have
obtained: ¢ =0:9875and 1 =0:9777 In the former case see the
aure on the next slide
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Figure 6. The constants oo (A) and o; (O) for Problem I, as a function of
ip = 1,...N = 40, when (No, N} = (40, 40) (1% noise).



2. Time-dependent Heat Transfer Coe cient
Consider the inverse problem which requires nding the tesrgiure
T 2 C%%(Q) and the time-dependent heat transfer coe cient
2 C([0;t¢]) satisfying the heat equation
T
Q(x;t)= reT(Gt);  (xt) = O:ti]=: Q;
@t
subject to the initial condition
T(x;0) = To(x); x2
the Robin boundary condition

%z(x;t)+ OTxt)= B(xt);, (xt)2@ (0:t);
and the temperature observation at the xed poinxiy 2 @ :
T(Xo;t) = 7(t); t2[0;ts]

or, the additignal boundary integral temperature obsereat
()TOG)dS(x) = ~(1); t2[0;t ];

where 2 Li(@) is given.



Numerical Example
Find the temperatureT (x;t) (= x2 + 2t + 1) and the time-dependent
heat transfer coe cient (t) (= t), solving the problem

T T

= OTocn: =01 Ot =11
T(x0)=x% x2[0;1];
QTo-t)+ (OT@O;t)=2t>+t, t2(0;1);
GoT OTEV=20r 12,
@T.. e 7 . .
@)Sl,t)+ MOT@)=2(t°+t+1); t2(0;1);

and the additional % noisy measurement condition

TO;t)=2t+1+ ; t2(0;1);

where denotes the percentage of noise andre random variables
taken from a Gaussian normal distribution with zero mean atadard
deviation3 %.

Using the BEM withN = N = 40 elements and various amounts of
noise % 2 f 1; 3; 59% we obtain the gure on the next slide.
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Figure 11. The analytical and numerical heat transfer coefficients o(t) for Prob-

lem II, as functions of time ¢, for various amounts of noise.
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2'. Time-dependent Heat Transfer Coe cient

Consider the inverse problem which requires nding the patution
(T(x;t); (t)) = (temperature,heat transfer coe cient) satisfying the
heat equation

@T o\ = 2T ety (wet) = S
@t(x,t)— reT(x;t); (xt)= O;t:]=: Q;
subject to the initial condition
T(x;0) = To(x); x2
the Robin boundary conditions
2+ T = B V2@  ©t);

and the additional boundary integral (non-local) obserat
z
( T(;))dS(x) = E(t); t2[0ts];
@

R
where ( T) = T g(s)ds denotes a primitive (anti-derivative) o.



Remarks:
Of physical interest is the linear convection cag@) = T, and the
nonlinear radiative casg(T) = T3jTj.

Multiplying with T the heat equation and integrating over results in
Z VA VA
T2(x;t)d  +  jr Tj’d = T hds
Z @
() o(M)TdS
@

)
2dt

and one could recognise the last term as an “energy' term
( +1) (t)E(t) for the nonlinearityg(T)= T .



Let us now consider the weak solutioisand of the inverse problem
de ned in the following spaces of functions:

T2 C(O;trl;iL2()) \ L2((0;tr);HE())
with @T 2 L2((0;t5);L2()) -

Oand 2 C[0;t;]with % bounded

We also require that the input data be such that;

To2 H?() 5 B;Bt2L2((0;t);L2(@) ;
¢® 0 90)=0; jg(s)i C(sj +1)

for some non-negative constan€,, C and



De nition. For a given 2 L(0;t;), 0, a function
T 2 La((0;t¢);HY()) with @T 2 Lo((0;t);L2()) is called a weak
solution to the direct problem ifT (x; 0) = Tp(Xx) and

(@T; )+(@T ;@ )+ (9T ) )e =(B; Ja:
8 2HY() ;ae. inO;t):

Theorem. (unique solvability of the direct problem)
There exists a unigue weak solution to the direct problem.



Existence and Uniqueness Theorem. (Slodicka and Lesnic (2010))
Assume that a compatibility condition at = 0 holds and that
Eqt) o> 0,jE)j Co, 8t 2 [0;t;] and that
Z
0<E(t) ( TO(x;t))dS(x); 8t 2 [0;t];
@

whereT? is the unique weak solution of the direct problem with= 0.
Then there exists a unique solution to the inverse problem.

The continuous dependence of the solution on the input egedgta

E (t) can (probably) be established under the additional assumpthat
is bounded. This is an usual additional source conditionchhivhen

imposed onto the solution of some ill-posed problems resits stability

with respect to noise added into the input data.



We employ the BEM

L z
ET(x;t) = G(xty;0)To(y)d( y)
z.z
+ B ) oTC ) OIG(x:t;; )ds()d
°o @ z.2 e
. @T(; )@Io)(x;t;; )dS( )d ;
8(x;t)@  (0;tr ];
and
z

(TCt)dS( )= E(t); 8t2 (0t ]:
@






3. Temperature-dependent Heat Transfer Coe cient

Consider the inverse problem of nding the temperatufe2 C3372(Q)

and the space-dependent heat transfer coe cient2 C([ 1; »]), where
1= min Gu(x;t) and , = maxéu(x;t) are assumed knowa priori and

satisfy 1 » > 0. We also assume

—(0) u(xt) —(@); (xt)2@ [0t ]
In addition, the pair solutionT; (T)) satis es the heat equation
T
%t(x;t) =r 2T(x;t); (xt)= O;tr]= Q;
subject to the initial condition
T(x;0) = To(x); x2
the Robin boundary condition
@T
@n(X:t) + (TO)T(xt) = B(xt); (xt)2@ (O;tr),
and the temperature observation at the xed pointy 2 @ :

T(xo;t)= 7(t); t2[0ts]:



Uniqueness Theorem. (Rundell and Yin (1990))
If B2 C%?(@ [0;tf]), and— 2 C2([0; t;]) is strictly increasing, then
the solution is unique.

Further, in the one-dimensional case we s@eR C2%1(Q) and
2 aam =f 2C% ([ 4 2Dj0<my (T) Mi<1g;

where 1 = minf0;inf x5 (.1)To(X)g and
2 = maxf0; maxyz 0;1) To(X)g.

Existence and Uniqueness Theorem. (Pilant and Rundell (1989))

In the one-dimensional case, ) 2 C2*172([0;1]), B =0, and

— 2 C¥™=2([0;t¢]) is strictly monotone and=(0) = To(0) = To(1), then
the inverse problem has a unique solution.



Boundary Element Method (BEM)

Using the BEM we reduce the inverse problem to nonlinear tutzum
integral equations for the boundary temperature and the heansfer
coe cient:

Z
%T(x;t) = G(xty;0)To(y)d( y)
Z.Z
+ B(; )G(xt;; )dS( )d
Z.2 ° @
. @G, .. . . e .
. @T(, ) —@m)(x,t,, )+ (T(; NGt ; ) dS()d;

(xt)2@ (0;tr):



In one-dimension, with the temperature measurement takénha
boundary pointx, = 0 we obtain a coupled system of two nonlinear
boundary integral equations in two unknowns, nam@lyl;t) and

(T(;1)):

1 Z1
5_(0 = . G(0;t;y;0)To(y)dy
Z
. Ot M 6050 ) )+ 260 ) d
Z
+ tT(l;t) G(O;t;1; ) (T(1;1)) %%;t;l; ) d. t2(0;t);
0

Z,
STY= Gy OTaly)ey
Z
v ) G0 ) (M) %?m;o; ) d
z 0
+ tT(l;t) G(L;t;1; ) (T(L;1)) %c%l;t;l; ) d; t2(0;t):
0



Using a constant BEM approximation withl boundary elements antl
cells, we obtain a system &N nonlinear equations

A (T)=Db

whereT; containsT (1;t), b containsTy, andB, and A is a nonlinear
operator depending on. Assuming that™ is strictly increasing, let

G = T(0)+ k(T(tr) T(0)=K; k=0K

denote a uniform discretisation of the the intervgl(0); —(tf )] into K
equal sub-intervals. Then we seek a piecewise constanttifmmc
(MT =1 :[p;x]! R denedby

ap; T 2 [op; 1)
az, T2[m )
f(T)= s _

ax; T2[k 1K)

where the unknown coe cientaa = (a),- 7 are yet to be determined.



AssumingT (1;t;f) 2 [7(0); —(t)], 8t 2 [0;t; ], we have

fCm)=aq: f(T@H)=aqgy; =51}

wheret; are the boundary element nodes, and for edchf 1;::;;Ng,
(1) is the unique number in the sétl; :::; K g such that

() 2 [d gy 1.9 (y), and (I) is the unique number in the set

f1, 5 Kgsuchthat (L) 2 [9 )y 1:0 @))-

We then minimize (using the NAG routine EO4FCF) the nonlinea
Tikhonov functional

S:R¢ RV Ry; S(&T;):=kA (T;) b+ kak?

where > 0 is a regularization parameter to be prescribed.



Numerical Examples

The BEM is applied with(N; N ) = (40 ; 40) to generate the forward
operatorA (T;). The piecewise constant parametrisation of
f(T)= (T)T is sought withK = 10.

The analytical temperature to be retrieved

T(x;t)=x* x+1+2t (xt)2[0;1] [0;1];
generates the initial temperature
T(x;0)= To(x)= x2 x+1; x2][0;1];
and the boundary temperature measurement

TO;t)= —(t)=1+2t t2][0;1]:

Remark that™ is strictly increasing and that
T@L;t)=1+2t2[7(0)=1;—(t)=1+2t], 8t 2 [0;1], such that the
unique solvability of the inverse problem is ensured.

Numerical results are presented next fofT) 2 f 1; T#g which
corresponds to a heat transfer coe cient(T) 2f T 1;T3g.









4. Conclusions

Reconstruction of heat transfer coe cient which may be smag¢time-,
or temperature-dependent has been addressed.

The existence and uniqueness of solution has been discusdsoth
strong and weak senses. Furthermore, a numerical metho@das the
boundary element method (BEM) (combined with the Tikhonov
reqularization method where necessary) has been deviseddier to
obtain stable and accurate numerical solutions.

Future work will investigate iterative regularizations én
higher-dimensional numerical reconstructions.



