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Heat Transfer Law

k
@T
@n

= � (T ambient � T ) � + B; on the boundary

where
T = temperature
T ambient = ambient temperature
k = thermal conductivity
n = outward unit normal to the boundary
B = additional heat ux
� = heat transfer coe�cient (may be space-, time-, or
temperature-dependent)
� = 1 for convection;� = 4 for radiation.
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1. Space-dependent Heat Transfer Coe�cient
Consider the inverse problem which requires �nding the temperature
T 2 C2;1(Q) and the space-dependent heat transfer coe�cient
� 2 C(@
) , � � 0, satisfying the heat equation

@T
@t

(x; t ) = r 2T(x; t ); (x; t ) = 
 � (0; t f ] =: Q;

subject to the initial condition

T(x; 0) = T0(x); x 2 
 ;

the Robin boundary condition

@T
@n

(x; t ) + � (x)T(x; t ) = B (x; t ); (x; t ) 2 @
 � (0; t f );

and the instant temperature observation at the �xed timet0 2 (0; t f ):

T (x; t 0) = � (x); x 2 @


or, the additional integral time-average temperature observation
Z t f

0
! (t)T (x; t )dt = � (x); x 2 @
 ;

where! 2 L 1(0; t f ) is given.



Boundary Element Method (BEM)
Using the BEM we reduce the inverse problem to nonlinear boundary
integral equations for the boundary temperature and the heat transfer
coe�cient:

1
2

T(x; t ) =
Z



G(x; t ; y; 0)T0(y)d
( y)

+
Z t

0

Z

@

B (�; � )G(x; t ; �; � )dS(� )d�

�
Z t

0

Z

@

T(�; � )

�
@G

@n(� )
(x; t ; �; � ) + � (� )G(x; t ; �; � )

�
dS(� )d�;

(x; t ) 2 @
 � (0; t f );

where

G(x; t ; �; � ) =
H (t � � )

[4� (t � � )]n= 2
exp

�
�

kx � � k2

4(t � � )

�

is the fundamental solution of the heat equation andH is the Heaviside
function.



Numerical Example
Find the temperatureT(x; t ) (= x2 + 2 t) and the space-dependent heat
transfer coe�cient(s) 0 � � 0 (= 1) , 0 � � 1 (= 1) solving the problem

@T
@t

(x; t ) =
@2T
@x2

(x; t ); (x; t ) = (0 ; 1) � (0; t f = 1] ;

T (x; 0) = x2; x 2 [0; 1];

�
@T
@x

(0; t) + � 0T(0; t) = 2 t; t 2 (0; 1);

@T
@x

(1; t) + � 1T(1; t) = 2 t + 3 ; t 2 (0; 1);

and the additional1% noisy measurement conditions

T(0; t0) = 2 t0 � 1:01; T(1; t0) = (1 + 2 t0) � 1:01;

or
Z t f

0
T(0; t)dt = 1 � 1:01;

Z t f

0
T(1; t)dt = 2 � 1:01:

Using the BEM withN = N0 = 40 elements, in the latter case we have
obtained: � 0 = 0 :9875and � 1 = 0 :9777. In the former case see the
�gure on the next slide.





2. Time-dependent Heat Transfer Coe�cient
Consider the inverse problem which requires �nding the temperature
T 2 C2;1(Q) and the time-dependent heat transfer coe�cient
� 2 C([0; t f ]) satisfying the heat equation

@T
@t

(x; t ) = r 2T(x; t ); (x; t ) = 
 � (0; t f ] =: Q;

subject to the initial condition

T(x; 0) = T0(x); x 2 
 ;

the Robin boundary condition

@T
@n

(x; t ) + � (t)T (x; t ) = B (x; t ); (x; t ) 2 @
 � (0; t f );

and the temperature observation at the �xed pointx0 2 @
 :

T(x0; t) = � (t); t 2 [0; t f ]

or, the additional boundary integral temperature observation
Z

@

� (x)T (x; t )dS(x) = � (t); t 2 [0; t f ];

where� 2 L 1(@
) is given.



Numerical Example
Find the temperatureT(x; t ) (= x2 + 2 t + 1) and the time-dependent
heat transfer coe�cient � (t) (= t), solving the problem

@T
@t

(x; t ) =
@2T
@x2

(x; t ); (x; t ) = (0 ; 1) � (0; t f = 1] ;

T (x; 0) = x2; x 2 [0; 1];

�
@T
@x

(0; t) + � (t)T (0; t) = 2 t2 + t; t 2 (0; 1);

@T
@x

(1; t) + � (t)T (1; t) = 2( t2 + t + 1) ; t 2 (0; 1);

and the additional� % noisy measurement condition

T(0; t) = 2 t + 1 + �; t 2 (0; 1);

where� denotes the percentage of noise and� are random variables
taken from a Gaussian normal distribution with zero mean andstadard
deviation3� %.

Using the BEM withN = N0 = 40 elements and various amounts of
noise� % 2 f 1; 3; 5g% we obtain the �gure on the next slide.





2'. Time-dependent Heat Transfer Coe�cient
Consider the inverse problem which requires �nding the pairsolution
(T(x; t ); � (t)) = (temperature,heat transfer coe�cient) satisfying the
heat equation

@T
@t

(x; t ) = r 2T(x; t ); (x; t ) = 
 � (0; t f ] =: Q;

subject to the initial condition

T(x; 0) = T0(x); x 2 
 ;

the Robin boundary conditions

@T
@n

(x; t ) + � (t)g(T(x; t )) = B (x; t ); (x; t ) 2 @
 � (0; t f );

and the additional boundary integral (non-local) observation
Z

@

�( T (x; t ))dS(x) = E(t); t 2 [0; t f ];

where�( T ) =
RT g(s)ds denotes a primitive (anti-derivative) ofg.



Remarks:
� Of physical interest is the linear convection caseg(T) = T, and the
nonlinear radiative caseg(T) = T 3jT j.

� Multiplying with T the heat equation and integrating over
 results in

1
2

d
dt

� Z



T 2(x; t )d


�
+

Z



jr T j2d
 =

Z

@

T h dS

� � (t)
Z

@

g(T)T dS

and one could recognise the last term as an `energy' term
(� + 1) � (t)E (t) for the nonlinearityg(T) = T � .



Let us now consider the weak solutionsT and � of the inverse problem
de�ned in the following spaces of functions:

T 2 C([0; t f ]; L 2(
)) \ L 2((0; t f ); H 1(
))

with @t T 2 L 2((0; t f ); L 2(
)) :

� � 0 and � 2 C1[0; t f ] with � 0=� bounded:

We also require that the input data be such that:

T0 2 H 2(
) ; B; B t 2 L 2((0; t f ); L 2(@
)) ;

g0 � 0; g(0) = 0 ; jg(s)j � C(jsj � + 1)

for some non-negative constantsC0, C and � .



De�nition. For a given� 2 L 2(0; t f ), � � 0, a function
T� 2 L 2((0; t f ); H 1(
)) with @t T 2 L 2((0; t f ); L 2(
)) is called a weak
solution to the direct problem ifT� (x; 0) = T0(x) and

(@t T� ; � ) + ( @x T� ; @x � ) + � (g(T� ); � )@
 = ( B; � )@
 ;

8� 2 H 1(
) ; a.e. in(0; t f ):

Theorem. (unique solvability of the direct problem)
There exists a unique weak solution to the direct problem.



Existence and Uniqueness Theorem. (Slodicka and Lesnic (2010))
Assume that a compatibility condition att = 0 holds and that
E 0(t) � � 0 > 0, jE 00(t)j � C0, 8t 2 [0; t f ] and that

0 < E (t) �
Z

@

�( T 0(x; t ))dS(x); 8t 2 [0; t f ];

whereT 0 is the unique weak solution of the direct problem with� = 0 .
Then there exists a unique solution to the inverse problem.

The continuous dependence of the solution on the input energy data
E(t) can (probably) be established under the additional assumption that
� is bounded. This is an usual additional source condition which when
imposed onto the solution of some ill-posed problems restore its stability
with respect to noise added into the input data.



We employ the BEM

1
2

T(x; t ) =
Z



G(x; t ; y; 0)T0(y)d
( y)

+
Z t

0

Z

@

[B (�; � ) � g(T(�; � )) � (� )]G(x; t ; �; � )dS(� )d�

�
Z t

0

Z

@

T(�; � )

@G
@n(� )

(x; t ; �; � )dS(� )d�;

8(x; t )@
 � (0; t f ];

and
Z

@

�( T (�; t ))dS(� ) = E(t); 8t 2 (0; t f ]:





3. Temperature-dependent Heat Transfer Coe�cient
Consider the inverse problem of �nding the temperatureT 2 C3;3=2(Q)
and the space-dependent heat transfer coe�cient� 2 C1([� 1; � 2]), where
� 1 = min Q u(x; t ) and � 2 = maxQ u(x; t ) are assumed knowna priori and
satisfy � 1� 2 > 0. We also assume

� (0) � u(x; t ) � � (t); (x; t ) 2 @
 � [0; t f ]:

In addition, the pair solution(T; � (T )) satis�es the heat equation

@T
@t

(x; t ) = r 2T(x; t ); (x; t ) = 
 � (0; t f ] =: Q;

subject to the initial condition

T(x; 0) = T0(x); x 2 
 ;

the Robin boundary condition

@T
@n

(x; t ) + � (T (x; t ))T (x; t ) = B (x; t ); (x; t ) 2 @
 � (0; t f );

and the temperature observation at the �xed pointx0 2 @
 :

T(x0; t) = � (t); t 2 [0; t f ]:



Uniqueness Theorem. (Rundell and Yin (1990))
If B 2 C2;2(@
 � [0; t f ]), and � 2 C2([0; t f ]) is strictly increasing, then
the solution is unique.

Further, in the one-dimensional case we seekT 2 C2;1(Q) and

� 2 � adm := f � 2 C0+1 ([� 1; � 2])j0 < m 1 � � (T ) � M 1 < 1g ;

where� 1 = min f 0; inf x 2 (0 ;1)T0(x)g and
� 2 = maxf 0; maxx 2 (0 ;1) T0(x)g.

Existence and Uniqueness Theorem. (Pilant and Rundell (1989))
In the one-dimensional case, ifT0 2 C2+1 =2([0; 1]), B = 0 , and
� 2 C1+1 =2([0; t f ]) is strictly monotone and� (0) = T0(0) = T0(1), then
the inverse problem has a unique solution.



Boundary Element Method (BEM)
Using the BEM we reduce the inverse problem to nonlinear boundary
integral equations for the boundary temperature and the heat transfer
coe�cient:

1
2

T(x; t ) =
Z



G(x; t ; y; 0)T0(y)d
( y)

+
Z t

0

Z

@

B (�; � )G(x; t ; �; � )dS(� )d�

�
Z t

0

Z

@

T(�; � )

�
@G

@n(� )
(x; t ; �; � ) + � (T (�; � ))G(x; t ; �; � )

�
dS(� )d�;

(x; t ) 2 @
 � (0; t f ):



In one-dimension, with the temperature measurement taken at the
boundary pointx0 = 0 we obtain a coupled system of two nonlinear
boundary integral equations in two unknowns, namelyT(1; t) and
� (T (1; t)) :

1
2

� (t) =
Z 1

0
G(0; t; y; 0)T0(y)dy

+
Z t

0
� (t)

�
G(0; t; 0; � )� (� (t)) +

@G
@�

(0; t; 0; � )
�

d�

+
Z t

0
T(1; t)

�
G(0; t; 1; � )� (T (1; t)) �

@G
@�

(0; t; 1; � )
�

d�; t 2 (0; t f );

1
2

T(1; t) =
Z 1

0
G(1; t; y; 0)T0(y)dy

+
Z t

0
� (t)

�
G(1; t; 0; � )� (� (t)) +

@G
@�

(1; t; 0; � )
�

d�

+
Z t

0
T(1; t)

�
G(1; t; 1; � )� (T (1; t)) �

@G
@�

(1; t; 1; � )
�

d�; t 2 (0; t f ):



Using a constant BEM approximation withN boundary elements andN0

cells, we obtain a system of2N nonlinear equations

A � (T1) = b;

whereT1 containsT(1; t), b containsT0 and B , and A � is a nonlinear
operator depending on� . Assuming that� is strictly increasing, let

qk := � (0) + k(� (t f ) � � (0))=K; k = 0; K

denote a uniform discretisation of the the interval[� (0); � (t f )] into K
equal sub-intervals. Then we seek a piecewise constant function
� (T )T =: f : [q0; qK ] ! R de�ned by

f (T ) =

8
>>><

>>>:

a1; T 2 [q0; q1)
a2; T 2 [q1; q2)
...

...
aK ; T 2 [qK � 1; qK )

where the unknown coe�cientsa = ( ak )k= 1;K are yet to be determined.



AssumingT(1; t; f ) 2 [� (0); � (t)], 8t 2 [0; t f ], we have

f (� (~t l )) = a� ( l ) ; f (T (1; ~t l )) = a ( l ) ; l = 1; l;

where~t l are the boundary element nodes, and for eachl 2 f 1; :::; N g,
� (l ) is the unique number in the setf 1; :::; K g such that
� (~t l ) 2 [q� ( l ) � 1; q� ( l ) ), and  (l ) is the unique number in the set
f 1; :::; K g such thatT(1; ~t l ) 2 [q ( l ) � 1; q ( l ) ).

We then minimize (using the NAG routine E04FCF) the nonlinear
Tikhonov functional

S : RK � RN ! R+ ; S(a; T1) := kA � (T1) � bk2 + � kak2;

where� > 0 is a regularization parameter to be prescribed.



Numerical Examples
The BEM is applied with(N; N 0) = (40 ; 40) to generate the forward
operatorA � (T 1). The piecewise constant parametrisation of
f (T ) = � (T )T is sought withK = 10.
The analytical temperature to be retrieved

T(x; t ) = x2 � x + 1 + 2 t; (x; t ) 2 [0; 1] � [0; 1];

generates the initial temperature

T(x; 0) = T0(x) = x2 � x + 1 ; x 2 [0; 1];

and the boundary temperature measurement

T(0; t) = � (t) = 1 + 2 t; t 2 [0; 1]:

Remark that� is strictly increasing and that
T(1; t) = 1 + 2 t 2 [� (0) = 1 ; � (t) = 1 + 2 t], 8t 2 [0; 1], such that the
unique solvability of the inverse problem is ensured.

Numerical results are presented next forf (T ) 2 f 1; T 4g which
corresponds to a heat transfer coe�cient� (T ) 2 f T � 1; T 3g.







4. Conclusions

� Reconstruction of heat transfer coe�cient which may be space-, time-,
or temperature-dependent has been addressed.

� The existence and uniqueness of solution has been discussedin both
strong and weak senses. Furthermore, a numerical method based on the
boundary element method (BEM) (combined with the Tikhonov
reqularization method where necessary) has been devised inorder to
obtain stable and accurate numerical solutions.

� Future work will investigate iterative regularizations and
higher-dimensional numerical reconstructions.


