A uniform reconstruction formula in integral geometry

Victor Palamodov

Tel Aviv University

April 2013
Several tomographic methods are based on explicit formulas of reconstruction in integral geometry.
Several tomographic methods are based on explicit formulas of reconstruction in integral geometry.

- X-ray, PET, SPECT, MRI, impedance, thermoacoustic, photoacoustic, Doppler, Compton, ultrasound, seismic tomographies, texture analysis, radar technique etc.
Several tomographic methods are based on explicit formulas of reconstruction in integral geometry.

X-ray, PET, SPECT, MRI, impedance, thermoacoustic, photoacoustic, Doppler, Compton, ultrasound, seismic tomographies, texture analysis, radar technique etc.

Given a function f (or a differential form) defined in a Riemannian manifold (X, g) the problem is to recover f from data of integrals

$$Rf(\sigma) = \int_{Z(\sigma)} f \, dg S$$

along a family of varieties $Z(\sigma) \subset X, \sigma \in \Sigma$ against a Riemannian area density $dg S$. The set Σ is called acquisition geometry.
Classical reconstructions

- The classical reconstruction formulas (Radon-John) hold for family of hyperplanes in \mathbb{R}^n and are FBP type. In the case $n = 2$

$$f(x) = -\frac{1}{4\pi^2} \int_0^{2\pi} \left(\int_{\mathbb{R}} \frac{g_p'(p, \omega)}{\langle \omega, x \rangle - p} \, dp \right) \, d\omega$$

filtration is composition of the Hilbert transform and first derivative. H.Lorentz’s reconstruction for the case $n = 3$

$$f(x) = -\frac{1}{8\pi^2} \int_{S^2} g_p''(\langle \omega, x \rangle, \omega) \, d\Omega$$

is of the same type where the second derivative is a filtration step.
The classical reconstruction formulas (Radon-John) hold for family of hyperplanes in \mathbb{R}^n and are FBP type. In the case $n = 2$

$$f(x) = -\frac{1}{4\pi^2} \int_0^{2\pi} \left(\int_{\mathbb{R}} \frac{g_p'(p, \omega)}{\langle \omega, x \rangle - p} \, dp \right) \, d\omega$$

filtration is composition of the Hilbert transform and first derivative. H. Lorentz’s reconstruction for the case $n = 3$

$$f(x) = -\frac{1}{8\pi^2} \int_{S^2} g_p''(\langle \omega, x \rangle, \omega) \, d\Omega$$

is of the same type where the second derivative is a filtration step.

There are several reconstruction formulas that look similar.
Let X and Σ be smooth n dimensional manifolds,
Let X and Σ be smooth n dimensional manifolds,

Z be a smooth closed hypersurface in $X \times \Sigma$ and $p : Z \to X$, $\pi : Z \to \Sigma$ be natural projections,
A general approach

- Let X and Σ be smooth n dimensional manifolds,
- Z be a smooth closed hypersurface in $X \times \Sigma$ and $p : Z \to X$, $\pi : Z \to \Sigma$ be natural projections,
- Z is zero level set for a generating function $\Phi : X \times \Sigma \to \mathbb{R}$ such that $d_x \Phi \neq 0$ on Z.
Let X and Σ be smooth n dimensional manifolds,

Z be a smooth closed hypersurface in $X \times \Sigma$ and $p : Z \to X$, $\pi : Z \to \Sigma$ be natural projections,

Z is zero level set for a generating function $\Phi : X \times \Sigma \to \mathbb{R}$ such that $d_x \Phi \neq 0$ on Z,

It follows that the set $Z(\sigma) = \pi^{-1}(\sigma) = \{x; \Phi(x, \sigma) = 0\}$ is for any $\sigma \in \Sigma$ a smooth hypersurface in X,
Let X and Σ be smooth n dimensional manifolds,

- Z be a smooth closed hypersurface in $X \times \Sigma$ and $p : Z \to X$, $\pi : Z \to \Sigma$ be natural projections,

- Z is zero level set for a generating function $\Phi : X \times \Sigma \to \mathbb{R}$ such that $d_x \Phi \neq 0$ on Z,

- It follows that the set $Z(\sigma) = \pi^{-1}(\sigma) = \{x; \Phi(x, \sigma) = 0\}$ is for any $\sigma \in \Sigma$ a smooth hypersurface in X,

- for any point $x \in X$ and for any tangent hyperplane $h \subset T_x(X)$ there is a locally unique hypersurface $Z(\sigma)$ through x tangent to h.
Funk-Radon transform

Let X is an open set in an Euclidean n space, dV be the volume form.
Funk-Radon transform

- Let X be an open set in an Euclidean n space, dV be the volume form.
- We call Funk-Radon transform of a function f in X the integral

$$M_{\Phi}f(\sigma) = \int \delta(\Phi(x,\sigma)) f dV = \int_{Z(\sigma)} f q$$
Let X be an open set in an Euclidean n space, dV be the volume form. We call Funk-Radon transform of a function f in X the integral

$$M_{\Phi} f (\sigma) = \int \delta (\Phi (x, \sigma)) f dV = \int_{Z(\sigma)} f q$$

The quotient $dV/d\Phi$ denotes an arbitrary $n-1$ form q such that $d\Phi \wedge q = dV$.

Comparison with an Euclidean hypersurface integral:

$$M_{\Phi} f (\sigma) = \int \delta (\Phi (x, \sigma)) f dS_{jr} x \Phi (x, \sigma)$$

If $\mathbf{jr}_x \Phi (x, \sigma) = m(x) \mu (\sigma)$ for some continuous functions m in X and μ in Σ, then

$$\int \delta (\Phi (x, \sigma)) f dS = \mu (\sigma) M_{\Phi} (mf)(\sigma), \sigma \in \Sigma,$$
Funk-Radon transform

- Let X be an open set in an Euclidean n space, dV be the volume form.
- We call Funk-Radon transform of a function f in X the integral
 \[
 M_{\Phi}f(\sigma) = \int \delta(\Phi(x, \sigma)) f dV = \int_{Z(\sigma)} fq
 \]
- The quotient $dV/d\Phi$ denotes an arbitrary $n-1$ form q such that $d\Phi \wedge q = dV$.
- Comparison with an Euclidean hypersurface integral:
 \[
 M_{\Phi}f(\sigma) = \int_{Z(\sigma)} \frac{f dS}{|\nabla_x \Phi(x, \sigma)|}
 \]
Let X be an open set in an Euclidean n space, dV be the volume form.

We call Funk-Radon transform of a function f in X the integral

$$M_\Phi f(\sigma) = \int \delta(\Phi(x, \sigma)) f dV = \int_{Z(\sigma)} f q$$

The quotient $dV/d\Phi$ denotes an arbitrary $n-1$ form q such that $d\Phi \wedge q = dV$.

Comparison with an Euclidean hypersurface integral:

$$M_\Phi f(\sigma) = \int_{Z(\sigma)} \frac{f dS}{|\nabla_x \Phi(x, \sigma)|}$$

If $|\nabla_x \Phi(x, \sigma)| = m(x) \mu(\sigma)$ for some continuous functions m in X and μ in Σ, then

$$\int_{Z(\sigma)} f dS = \mu(\sigma) M_\Phi (mf)(\sigma), \sigma \in \Sigma$$
Further assumptions

- \(\Phi \) is called *resolved* if \(\Sigma = \mathbb{R} \times S^{n-1} \) and
 \[
 \Phi(x; p, \omega) = \theta(x, \omega) - p, \quad p \in \mathbb{R}, \quad \omega \in S^{n-1}
 \]
 for a smooth function \(\theta \) on \(X \times S^{n-1} \).
Further assumptions

- Φ is called resolved if $\Sigma = \mathbb{R} \times S^{n-1}$ and $\Phi(x; p, \omega) = \theta(x, \omega) - p$, $p \in \mathbb{R}$, $\omega \in S^{n-1}$ for a smooth function θ on $X \times S^{n-1}$.

- Acquisition geometry is called elliptic if (i) $\nabla_x \theta \wedge (d\omega \nabla_x \theta)^{n-1} \neq 0$ and
Further assumptions

- \(\Phi \) is called \textit{resolved} if \(\Sigma = \mathbb{R} \times S^{n-1} \) and
 \[\Phi(x; p, \omega) = \theta(x, \omega) - p, \quad p \in \mathbb{R}, \quad \omega \in S^{n-1} \]
 for a smooth function \(\theta \) on \(X \times S^{n-1} \).

- Acquisition geometry is called \textit{elliptic} if (i) \(\nabla_x \theta \wedge (d_\omega \nabla_x \theta)^{n-1} \neq 0 \) and

- (ii) \textit{there are no conjugate points}, that is the equations
 \(\theta(x, \omega) - \theta(y, \omega) = 0 \) and
 \(d_\omega (\theta(x, \omega) - \theta(y, \omega)) = 0 \) are fulfilled
 for no \(x \neq y \in X, \omega \in S^{n-1} \).
Let f be a real smooth function in a manifold X, n is natural. Define

$$I_n(\rho) = \int_X \frac{\rho}{(f+i0)^n} = \lim_{\varepsilon \searrow 0} \int_X \frac{\rho}{(f+i\varepsilon)^n},$$

for a smooth real density ρ with compact support. If $df \neq 0$ on the zero set of f, then the limits exist and I_n is a generalized function in X.
Singular integrals

- Let f be a real smooth function in a manifold X, n is natural. Define
 \[I_n(\rho) = \int_X \frac{\rho}{(f + i0)^n} = \lim_{\varepsilon \searrow 0} \int_X \frac{\rho}{(f + i\varepsilon)^n}, \]
 for a smooth real density ρ with compact support. If $df \neq 0$ on the zero set of f, then the limits exist and I_n is a generalized function in X.
- The functional
 \[(P) \int_X \frac{\rho}{f^n} \equiv \text{Re} \, I_n(\rho) \]
 is called a principal value integral.
Singular integrals

- Let f be a real smooth function in a manifold X, n is natural. Define
 \[I_n(\rho) = \int_X \frac{\rho}{(f + i0)^n} = \lim_{\varepsilon \searrow 0} \int_X \frac{\rho}{(f + i\varepsilon)^n}, \]
 for a smooth real density ρ with compact support. If $df \neq 0$ on the zero set of f, then the limits exist and I_n is a generalized function in X.

- The functional
 \[(P) \int_X \frac{\rho}{f^n} \doteq \text{Re } I_n(\rho) \]
 is called a *principal value* integral.

- For a resolved regular generating function $\Phi = \theta - p$ we define
 \[\Theta_n(x, y) = (-1)^{n/2} \int_{S^{n-1}} \frac{\Omega}{(\theta(x, \omega) - \theta(y, \omega) - i0)^n}, \quad x \neq y \]
 where Ω is the Euclidean volume form on the unit sphere S^{n-1}. The singular integral converges by (ii).
Theorem. Let $\Phi = \theta - p$ be a resolved regular generating function, $f \in L_{2\text{comp}}(X)$ and $g = Mf$. If

$$\text{Re} \Theta_n(x, y) = 0$$

for $x \neq y \in X$, then for even n

$$f = \frac{1}{2D_n(x)} R^* \left(Hg^{(n-1)} \right)$$

and for odd n

$$f = \frac{1}{2D_n(x)} R^* \left(g^{(n-1)} \right)$$
Theorem. Let $\Phi = \theta - p$ be a resolved regular generating function, $f \in L_{2\text{comp}}(X)$ and $g = Mf$. If

$$\text{Re} \Theta_n(x, y) = 0$$

for $x \neq y \in X$, then for even n

$$f = \frac{1}{2D_n(x)} R^* \left(Hg^{(n-1)} \right)$$

and for odd n

$$f = \frac{1}{2D_n(x)} R^* \left(g^{(n-1)} \right)$$

where

$$R^* g(x) = \int_{S^{n-1}} g(\theta(x, \omega), \omega) \Omega$$

is back projection, and
\[g^{(n-1)} = \left(\frac{\partial}{2\pi i \partial p} \right)^{n-1} M_{\Phi} f, \quad H_a(p) = \frac{i}{\pi} \int \frac{a(q)}{p-q} dq \]

and

\[D_n(x) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} \frac{\Omega}{|\nabla_x \theta(x, \omega)|^n} \]
\[g^{(n-1)} = \left(\frac{\partial}{2\pi i \partial p} \right)^{n-1} M_{\Phi} f, \quad Ha(p) = \frac{i}{\pi} \int \frac{a(q)}{p-q} dq \]

and

\[D_n(x) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} \frac{\Omega}{|\nabla_x \theta(x, \omega)|^n} \]

Inversion integral transforms converge in \(L_{2\text{loc}} \).
\[g^{(n-1)} = \left(\frac{\partial}{2\pi i \partial p} \right)^{n-1} M_\Phi f, \quad Ha(p) = \frac{i}{\pi} \int \frac{a(q)}{p - q} dq \]

and

\[D_n(x) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} \frac{\Omega}{\nabla_x \theta(x, \omega)} |^n \]

- Inversion integral transforms converge in L^2_{loc}.
- Compare with the inversion formulas for Radon’s!
Checking the key condition

If \(n = 2 \) and \(\theta(x, \omega) - \theta(y, \omega) \) is for any \(x, y \in X \), \(x \neq y \) a trigonometric polynomial in \(\omega \) of positive degree with only real zeros then \(\text{Re} \Theta_2(x, y) = 0 \).
Checking the key condition

- If \(n = 2 \) and \(\theta(x, \omega) - \theta(y, \omega) \) is for any \(x, y \in X, x \neq y \) a trigonometric polynomial in \(\omega \) of positive degree with only real zeros then \(\text{Re} \Theta_2(x, y) = 0. \)

- For any \(n \geq 3, v \in \mathbb{R}^n \) and \(a \in R \) be such that \(|a| < |v| \). Then

\[
\text{Re} \left(-1 \right)^{n/2} \int_{S^{n-1}} \frac{\Omega}{\left(\langle \omega, v \rangle - a - i0 \right)^n} = 0
\]
Examples

- **Radon transform.** For a generating function
 \[\Phi(x; p, \omega) = \langle \omega, x \rangle - p \]
 defined in \(\mathbb{R}^n \times \Sigma \), \(\Sigma = \mathbb{R} \times S^{n-1} \) we have \(|\nabla \theta| = D_n(x) = 1 \).
Examples

- **Radon transform.** For a generating function \(\Phi(x; p, \omega) = \langle \omega, x \rangle - p \) defined in \(\mathbb{R}^n \times \Sigma \), \(\Sigma = \mathbb{R} \times S^{n-1} \) we have \(|\nabla \theta| = D_n(x) = 1 \).

- **Funk transform.** If \(n = 2 \) is even then any function \(f \) can be reconstructed from its integrals \(g(\sigma) \) over big circles \(S(\sigma) = \{ x \in X, \langle \sigma, x \rangle = 0 \} \), \(\sigma \in S^2_+ \) by

\[
 f(x) = \frac{1}{4\pi^2} \int_{S^+} \frac{g(\sigma) \, d\sigma}{\langle \sigma, x \rangle^2}
\]

where \(S^{n-1}_+ = \{ \sigma \in \mathbb{R}^{n+1}; |\sigma| = 1, \sigma_0 \geq 0 \} \) is a hemisphere.
Examples

- **Radon transform.** For a generating function
 \(\Phi(x; p, \omega) = \langle \omega, x \rangle - p \) defined in \(\mathbb{R}^n \times \Sigma, \Sigma = \mathbb{R} \times S^{n-1} \) we have \(|\nabla \theta| = D_n(x) = 1. \)

- **Funk transform.** If \(n = 2 \) is even then any function \(f \) can be reconstructed from its integrals \(g(\sigma) \) over big circles \(S(\sigma) = \{ x \in X, \langle \sigma, x \rangle = 0 \} \), \(\sigma \in S^2_+ \) by

 \[
 f(x) = \frac{1}{4\pi^2} \int_{S^2_+} \frac{g(\sigma) \, d\sigma}{\langle \sigma, x \rangle^2}
 \]

 where \(S^{n-1}_+ = \{ \sigma \in \mathbb{R}^{n+1}; |\sigma| = 1, \sigma_0 \geq 0 \} \) is a hemisphere.

- For \(n = 3 \) we have

 \[
 f(x) = -\frac{1}{8\pi^2} \int_{S^{n-1}_+} \delta''(\langle \sigma, x \rangle) \, g(\sigma) \, d\sigma
 \]
Fully geodesic surfaces. Take the generating function
\[\theta = -2 \langle \omega, x \rangle \left(|x|^2 + 1 \right)^{-1} \]
in the unit ball \(X \subset \mathbb{R}^n \) and set
\[g(\sigma) = \int_{Z(\sigma)} f(x) \, d_g S \]
where hypersurfaces \(Z(\sigma) = Z(p, \omega) \), \(-1 < p < 1\) are fully geodesics for the hyperbolic metric \(d_g s = 2 \left(1 - |x|^2 \right)^{-1} ds \).
Fully geodesic surfaces. Take the generating function
\[\theta = -2 \langle \omega, x \rangle \left(|x|^2 + 1 \right)^{-1} \]
in the unit ball \(X \subset \mathbb{R}^n \) and set
\[g(\sigma) = \int_{Z(\sigma)} f(x) \, dg S \]
where hypersurfaces \(Z(\sigma) = Z(p, \omega), -1 < p < 1 \) are fully geodesics for the hyperbolic metric \(dg s = 2 \left(1 - |x|^2 \right)^{-1} ds \).

Reconstruction for \(n = 2 \) is
\[f(x) = \frac{1}{4\pi^2} \int_{Q_+} g(\sigma) \, dg \sigma \]
and for \(n = 3 \)
\[f(x) = -\frac{1}{8\pi^2} \int_{Q_+} \delta'' \left(\langle \sigma, x \rangle \right) g(\sigma) \, dg \sigma \]
where \(Q_+ = \left\{ \sigma = (\sigma_0, \sigma') \in \mathbb{R}^{n+1}; \sigma_0^2 - |\sigma'|^2 = -1, \sigma_0 \geq 0 \right\} \) is the dual one sheet hyperboloid.
Equidistant spheres. Let X be again a unit n ball, $n \geq 2$ and $\theta (x, \omega) = (r - \langle \omega, x \rangle) \left(1 - |x|^2\right)^{-1}, \omega \in S^{n-1}, 0 \leq r < 1.$
- **Equidistant spheres.** Let X be again a unit n ball, $n \geq 2$ and $\theta(x, \omega) = (r - \langle \omega, x \rangle) \left(1 - |x|^2\right)^{-1}$, $\omega \in S^{n-1}$, $0 \leq r < 1$.

- **Horospheres.** Take $r = 1$ in the above formula.
• **Equidistant spheres.** Let X be again a unit n ball, $n \geq 2$ and $	heta(x, \omega) = (r - \langle \omega, x \rangle) \left(1 - |x|^2\right)^{-1}$, $\omega \in S^{n-1}$, $0 \leq r < 1$.

• **Horospheres.** Take $r = 1$ in the above formula.

• **Spheres** centered on the boundary, All 4 type of sphere families
Let $\xi : S^{n-1} \to \mathbb{R}^n$ be a smooth map and generating function and $\theta (x, \omega) = |x - \xi (\omega)|^2$, $\omega \in S^{n-1}$ be a generating function.
Let $\xi : S^{n-1} \rightarrow \mathbb{R}^n$ be a smooth map and generating function and $\theta (x, \omega) = |x - \xi (\omega)|^2$, $\omega \in S^{n-1}$ be a generating function.

The equation $\Phi = 0$ defines the family of spheres with the centers $\xi (\omega)$, $\omega \in S^{n-1}$. The image C of ξ is called central set.
Let $\zeta : S^{n-1} \to \mathbb{R}^n$ be a smooth map and generating function and $\theta (x, \omega) = |x - \zeta (\omega)|^2$, $\omega \in S^{n-1}$ be a generating function. The equation $\Phi = 0$ defines the family of spheres with the centers $\zeta (\omega)$, $\omega \in S^{n-1}$. The image C of ζ is called central set. This geometry is of special interest in view of application to the photoacoustic (thermoacoustic) tomography.
Let $\xi: S^{n-1} \rightarrow \mathbb{R}^n$ be a smooth map and generating function and $\theta(x, \omega) = |x - \xi(\omega)|^2$, $\omega \in S^{n-1}$ be a generating function. The equation $\Phi = 0$ defines the family of spheres with the centers $\xi(\omega)$, $\omega \in S^{n-1}$. The image C of ξ is called central set.

This geometry is of special interest in view of application to the photoacoustic (thermoacoustic) tomography.

Ellipsoids. Any ellipsoid C as a central set fulfils the conditions if X is the interior
Let $\xi : S^{n-1} \to \mathbb{R}^n$ be a smooth map and generating function and $\theta(x, \omega) = |x - \xi(\omega)|^2$, $\omega \in S^{n-1}$ be a generating function.

The equation $\Phi = 0$ defines the family of spheres with the centers $\xi(\omega), \omega \in S^{n-1}$. The image C of ξ is called central set.

This geometry is of special interest in view of application to the photoacoustic (thermoacoustic) tomography.

Ellipsoids. Any ellipsoid C as a central set fulfills the conditions if X is the interior
Photoacoustic geometries (cont.)

- Paraboloids
Photoacoustic geometries (cont.)

- **Paraboloids**
Hyperbolic curves

- In the case $n = 2$ there are more geometries which allow exact reconstruction formulas.
In the case $n = 2$ there are more geometries which allow exact reconstruction formulas.

A curve $\mathbf{C} \subset \mathbb{R}^2$ is called *trigonometric* of degree k if it is given by a parametric equation

$$x_1 = \xi_1(\varphi), x_2 = \xi_2(\varphi), \varphi \in S^1$$

where ξ_1, ξ_2 are real trigonometric polynomials of degree k.
Hyperbolic curves

- In the case $n = 2$ there are more geometries which allow exact reconstruction formulas.
- A curve $\mathbf{C} \subset \mathbb{R}^2$ is called *trigonometric* of degree k if it is given by a parametric equation
 \[x_1 = \xi_1 (\varphi), \quad x_2 = \xi_2 (\varphi), \quad \varphi \in S^1 \]
 where ξ_1, ξ_2 are real trigonometric polynomials of degree k.
- A point $x \in \mathbb{R}^2$ is called *hyperbolic* with respect to a trigonometric curve \mathbf{C} if any straight line L through x meets the curve at $2k$ different points.
In the case $n = 2$ there are more geometries which allow exact reconstruction formulas.

A curve $\mathbf{C} \subset \mathbb{R}^2$ is called *trigonometric* of degree k if it is given by a parametric equation

$$x_1 = \xi_1(\varphi), x_2 = \xi_2(\varphi), \varphi \in S^1$$

where ξ_1, ξ_2 are real trigonometric polynomials of degree k.

A point $x \in \mathbb{R}^2$ is called *hyperbolic* with respect to a trigonometric curve \mathbf{C} if any straight line L through x meets the curve at $2k$ different points.

The set H of all hyperbolic points is always closed and convex. We call a curve \mathbf{C} *hyperbolic* if the set H of hyperbolic points is not empty.
Proposition. For arbitrary points \(x, y \in H, \ x \neq y \), all roots of the polynomial \(|x - \xi(\omega)|^2 - |y - \xi(\omega)|^2 \) (of order \(k \)) are real.
Hyperbolic central sets

- **Proposition.** For arbitrary points $x, y \in H$, $x \neq y$, all roots of the polynomial $|x - \xi(\omega)|^2 - |y - \xi(\omega)|^2$ (of order k) are real.

- **Corollary.** If C is a hyperbolic trigonometric curve, then the FBP reconstruction holds arbitrary function f supported in the set H of hyperbolic points from data of integrals

$$g(\sigma) = \int_{\sigma} f \, ds$$

over circles σ centered at C.
Proposition. For arbitrary points $x, y \in H$, $x \neq y$, all roots of the polynomial $|x - \xi(\omega)|^2 - |y - \xi(\omega)|^2$ (of order k) are real.

Corollary. If C is a hyperbolic trigonometric curve, then the FBP reconstruction holds arbitrary function f supported in the set H of hyperbolic points from data of integrals

$$g(\sigma) = \int_{\sigma} f ds$$

over circles σ centered at C.

Remind Retrowsky's theory of lacunas of fundamental solutions of hyperbolic equations!
1. \(\xi_1(\varphi) = 2 \cos 2\varphi - \cos \varphi, \quad \xi_2(\varphi) = 2 \sin 2\varphi + \sin \varphi \)

The hyperbolic set \(H \) is the triangle in the middle, \(k = 2 \).
2. A hyperbolic "square" set is defined by the trigonometric curve
\[\xi_1(\varphi) = 2\cos 3\varphi + \cos \varphi, \quad \xi_2(\varphi) = 2\sin 3\varphi - \sin \varphi \]
3. A "pentagon" is the hyperbolic set of the curve
\[\tilde{\xi}_1(\varphi) = 5 \cos 4\varphi + 4 \cos \varphi, \quad \tilde{\xi}_2(\varphi) = 5 \sin 4\varphi - 4 \sin \varphi, \quad k = 4 : \]
Thank you for your attention!
Thank you for your attention!