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Introduction

I Following the correct selection of a therapy based on the
indication, an optimal dosing regimen is the most important
determinant of therapeutic success of a medical therapy.

I Most physicians rely on the prescription information for
choosing dosing regimens, so the ethical responsibility for
supplying an optimal dosing regimen remains largely with
pharmaceutical companies.

I In the past, the pharmaceutical industry was predominantly
interested in achieving approval based on differentiation of
the drug against placebo or an active comparator,
neglecting the optimization of dosing regimens.
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Introduction

I The maximal safe dose was often chosen for confirmatory
phase III trials and initially approved/administered to the
general patient population.

I In several cases, this initial dose had to be lowered after
marketing of the drug, in some cases, the entire program
was stopped after unacceptable adverse effects within the
high dose range occurred.

I Provision of the minimal clinical effective dose, the
maximum safe dose and the optimal dose by indication not
only improves the chances of a successful approval, but
can cure the disease more effectively.
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Introduction

I Here we present an algorithm for optimization of loading
and maintenance doses

I of single drugs
I and two combined drugs, where the combination ratio is

also optimized.

I This is achieved based on a target concentration or a
therapeutic concentration window.

I We also present a design for an adaptive clinical trial and
some simulation studies.
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Concentration of a drug in blood after administering a single
dose.
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The concentration of a drug with multiple dosing.

The areas of under-exposure are marked with ‘-’ sign and
over-exposure are marked with ‘+’ sign. The green line
represents the target concentration of the drug that is desired
to be maintained.
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The areas of under- and over-exposure are to be minimized by
an optimum choice of dose levels.

We start assuming that the PK model is known and that we
know the estimates of the model parameters.
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Efficient Dosing Regimens
Notation

D = (d1, d2, ..., dn) denotes a vector of doses di that are
administered at n occasions, a dosing regimen.

Ci(t, d1, . . . , di) denotes the concentration of the drug at time t
after doses d1, . . . , di are administered.

Functions ∆i : D 7→ R≥0, D ⊂ Ri
≥0, i = 1, . . . , n, are such that,

∆i(d1, . . . , di) =

∫ ti

ti−1

|C(t, d1, . . . , di)− Ctgt|dt,

where Ctgt denotes the target concentration.

The ∆-functions measure the areas of under- and
over-exposure around the target concentration.

We denote by ∆ = (∆1, ∆2, ..., ∆n) the vector of ∆-functions.
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Efficient Dosing Regimens
Criteria of Efficiency

Let D = [0, dmax]n be the class of all dosing regimens D, where
dmax is the maximum dose which can be administered.

Definition (ϕA-efficiency)
A regimen D? = (d∗

1 , . . . , d
∗
n) ∈ D is called ϕA-efficient if the

function

ϕA(∆) =
1
n

n∑
i=1

∆i

is minimized by D? or equivalently

n∑
i=1

∆∗
i ≤

n∑
i=1

∆i

for all D ∈ D, where ∆∗
i = ∆i(d∗

1 , ..., d
∗
i ), i = 1, ..., n.
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Efficient Dosing Algorithm

Let
Lk

i = {d k
i1, d k

i2, d k
i3}

be the set of 3 possible doses (dose sets) that can be
administered at the ith occasion, i = 1, ..., n, and k-th iteration,
k = 1, 2, ..., w.

Thus, the number of possible dosing regimens in this case is 3n.

Iteration No. 1
Set

L1
i = {10% of dmax, 50% of dmax, dmax}

for all i = 1, . . . , n.

For each of the 3n dosing regimens, we compute ϕ(∆).

D1 is the dosing regimen which minimizes ϕ(∆).
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Efficient Dosing Algorithm

Iteration No. k

The dose sets Lk
i are reconstituted based on the doses in D k−1.

For example, if d k−1
i3 was selected for i-th occasion in iteration

k − 1, the new dose set will be:

Lk
i =

{
ε× d k−1

i3 , d k−1
i3 , min

(
d k−1

i3
ε

, dmax

)}
.

where ε ∈ (0, 1) is a fixed constant, called the resolution.

For each of the 3n dosing regimens, we compute ϕ(∆).

D k is the dosing regimen which minimizes ϕ(∆).
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Efficient Dosing Algorithm

Terminal Iteration No. w

The algorithm is terminated at wth iteration if

d w
i = d w−1

i ∀ i = 1, ... , n,

where d k
i denotes the optimal dose to be administered at the ith

occasion, at the kth iteration.

Thus, the algorithm terminates when for the given resolution,
no further improvement is possible.

By choosing appropriate resolution, D w can be driven as close
as required to the most efficient dosing regimen D?.
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Efficient Dosing Algorithm
Properties

Theorem
The ED Algorithm converges to the true unknown ϕ-efficient
dosing regimen D? when the resolution tends to 1, that is

ε→ 1 ⇒ D w → D?.

The major argument in the proof is that the unknown true
optimal doses d∗

i lie in the respective intervals, that is

d?
i ∈

(
εd w

i ,min
{

d w
i
ε
, dmax

})
.
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Efficient Dosing Algorithm
Properties

We can decrease the under- and over-exposure by planning
more frequent dosing.

C(t) when τ = 3h. C(t) when τ = 8h.
ϕA(∆∗|.99) = 0.5284. ϕA(∆∗|.99) = 3.4515.
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Efficient Dosing Algorithm
Example: one-compartment model

C(t, d) =
FdKa

V(Ka − Ke)
(e−Ket − e−Kat) ,

where
Ka and Ke denote the absorption and elimination rate constants,
V is the volume of distribution,
F is the bio-availability.

For the calculations we take the following estimates of the
parameters

(K̂a, K̂e, V̂, F̂) = (0.37 h−1, 0.2 h−1, 24 L, 0.95).

Also, Ctgt = 3mg L−1 and dmax = 250 mg and we consider n = 7
occasions to administer the drug with τj = 6h, j = 1, ..., 7 so that
T = 42.
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Efficient Dosing Algorithm
Example: one-compartment model

At resolution of ε = 0.99, ϕA-efficient dosing regimen is

D = (163.87, 69.04, 92.12, 87.00, 87.88, 88.49, 87.88) .

The concentration profile is shown below.
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Efficient Dosing Algorithm
Example: one-compartment model

The algorithm converged in 84 iterations (ε = 0.99).

Convergence of φA(∆). Convergence of D = (d1, . . . , d7).



Extension: Combination of two drugs

Let the ratio of drug A to drug B in the tablet be 1 : θ.

The problem then is two-fold:

Find the optimal ratio θ∗ in which the drugs should be combined
and find the most efficient dosing regimen D? for the tablet.

I We have two target concentrations CA
tgt and CB

tgt.
I The dosing regimen for the tablet will be

DA + DB = DA(1 + θ)

I We minimize

ϕC(∆) = ωϕA
A(∆) + (1− ω)ϕB

A(∆)

where ω is a weighting constant.
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Example: Coartem R©

This is a combination of two drugs:
1. Arthemether (A)
2. Lumefantrine (B)

The current dosing regimen with the ration of θ = 6 over three
days gives a typical concentration profile as shown in the figure
below.
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number of doses.
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drugs for the optimum regimen D?
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Extension: Combination of two drugs
Example: Coartem R©

Comparison of the dosing regimens and the combination ratios.

Dosing Regimen θ∗ φC

DA = (80.0, 80.0, 80.0, 80.0, 80.0, 80.0)
DB = (480.0, 480.0, 480.0, 480.0, 480.0, 480.0) 6.00 135.2

DA∗

I = (60.6, 46.7, 49.6, 49.6, 49.4, 39.3)
DB∗

I = (499.7, 384.8, 408.7, 408.7, 407.3, 324.4) 8.24 106.8

DA∗

II = (60.6, 67.7, 42.2, 43.8, 48.9, 49.4, 45.1)
DB∗

II = (437.2, 488.3, 304.5, 315.9, 352.8, 356.4, 325.6) 7.21 80.7



Population Optimum Dose Regimen
Population PK Model

We consider the compartment model:

C(t, d,β) =
dKa

V(Ka − Ke)
(e−Ket − e−Kat),

where β = (Ka,Ke,V) are unknown parameters,
Ka is the absorption rate constant,
Ke is the elimination rate constant,
V is the volume of distribution.

The aim is to maintain a target concentration,

Ctgt = 5mg/L for T = 40h

by administering n = 5 doses at t∗k = 0, 8, 16, 24, 32 h.
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Population PK model

We take the stage 1 model as

yij = C(tij, di,βj) exp{eij}, di = (d1, . . . , di), βj = (Kaj,Kej,Vj)

and the stage 2 model as Kaj

Kej

Vj

 =

 Ka exp{bKaj}
Ke exp{bKej}
V exp{bVj}

 ,

where

eij ∼ N (0, σ2), bj =

 bKaj

bKej

bVj

 ∼ N3(0,Ω)

and eij are independent from bj.
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Population Optimum Dose Regimen
Adaptive Clinical Trial

At stage k of the Trial:
Step 1 Apply the ED algorithm to determine the efficient

dosing regimen Dk for given β̂k−1.
Step 2 Administer the dosing regimen Dk to the kth cohort.
Step 3 Obtain the PK responses at the respective

D-optimal sampling time points.
Step 4 Obtain the estimates of the PK parameters as β̂k.
Step 5 Stop the trial if the stopping rule is met, otherwise

set k = k + 1 and repeat steps 1-4.
Step 6 Analyze the gathered data to recommend the best

possible dosing regimen.
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Population Optimum Dose Regimen
Adaptive Clinical Trial: Simulation Study

For the simulation we assume the true population parameters
be β = (Ka,Ke,V) = (.85, .15, 17), σ2 = .01 and

Ω =

 .015 0 0
0 .015 .005
0 .005 .005

 .

Based on these parameters, the efficient dose regimen is:

D∗ = (145, 90, 95, 95, 95)

with ϕ(∆∗
5) = 7.13.
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Population Optimum Dose Regimen
Adaptive Clinical Trial: Simulation Study

The dosing regimen for the true model parameters
and the D-optimum sampling times ξ? = {0.10, 4.77, 61.88}



Population Optimum Dose Regimen
Population Variability

Simulated profiles of concentration of a 100 patients



Population Optimum Dose Regimen
Adaptive Clinical Trial: Simulation Study

We assume that some prior knowledge about the PK
parameters and population variability is available from previous
studies.

Here we have β0 = (1.5, .25, 13)T , σ2
0 = .5 and

Ω0 =

 .3 0 0
0 .4 .6
0 .6 .5

 .

The parameters to be estimated are

Ψk =
(
βk,ωk, σ

2
k
)

where ωk = (ω11k , ω22k , ω33k , ω23k ).
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Adaptive Clinical Trial: Stopping Rules

Stopping Rules
1 The trial is terminated when the same dose

regimen gets administered to two successive
cohorts.

2 The trial is terminated at the kth iteration when the
dose regimen for the next cohort coincides with
D∗.

3 The trial is terminated at the kth iteration if all the
elements of Ψk are within 10% of the true
parameters.
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Population Optimum Dose Regimen
Results of the Simulated Adaptive Clinical Trial

For true parameters: D = (145, 90, 95, 95, 95)T Stopping Rule 1: D8 = (145, 90, 95, 90, 95)T

Stopping Rule 2: D5 = (145, 90, 95, 95, 95)T Stopping Rule 3: D12 = (135, 85, 85, 90, 85)T



Population Optimum Dose Regimen
Software used

I RELME algorithm in MatLab is used for estimation of PK
parameters at each stage of the trial,

I D-optimality criterion is used to determine the optimal
blood sampling times, using the software PopED.



Conclusions

I This is work in progress.
I The method can be applied for other criteria and other

models.
I Continuous or discrete set of dose levels can be used.
I Combining population D-optimum design for blood

sampling with the φA-optimum dose regimen selection in
an adaptive trial gives good results.

I Farther work includes incorporation of covariates to make
the dose regimen more suitable for a stratified population.
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All things are poison, and nothing is without poison; only the
dose permits something not to be poisonous.

Paracelsus (Philippus Aureolus
Theophrastus Bombastus von
Hohenheim, 1493-1541) was a
Swiss German Renaissance
physician, botanist, alchemist,
astrologer,
and general occultist.
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THANK YOU
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