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To use complex simulators to make statements about physical systems (like

climate), we need to quantify the uncertainty involved in moving from the model

to the system.

This talk will give an overview of some important features of this area, from a

Bayes linear viewpoint.

Camila’s talk (following) will apply these ideas, for a climate model which is

simple but has interesting behaviour.
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porosities, faults). Outputs are behaviour at wells (gas/oil production, water

cut). The aim is to develop efficient production schedules, determine whether

and where to sink new wells, and so forth.

Galaxy formation The study of the development of the Universe is carried out

by using a Galaxy formation simulator. The inputs are certain underlying

physical constants (considered true but unknown). The outputs are the

configuration of galaxies in the universe. The aim is to gain information about

the physical processes underlying the Universe.

Climate change Global climate simulators are used to assess likely effects of

human intervention upon future climate behaviour. Inputs are physical

constants describing the evolution of climate in response to properties like CO2

forcing. Outputs are features of global future climate. Aims are scientific - to

learn about large scale interactions which determine climate - and practical, as

such simulators provide evidence for the need to change our behaviour before

irreversible changes are set into motion.
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(i) parametric uncertainty (each model requires a, typically high dimensional,

parametric specification)

(ii) condition uncertainty (uncertainty as to boundary conditions, initial

conditions, and forcing functions),

(iii) functional uncertainty (model evaluations take a long time, so the

function is unknown almost everywhere )

(iv) stochastic uncertainty (either the model is stochastic, or it should be),

(v) solution uncertainty (as the system equations can only be solved to some

necessary level of approximation).

(vi) structural uncertainty (the model only approximates the physical system),

(vii) measurement uncertainty (as the model is calibrated against system

data all of which is measured with error),

(viii) multi-model uncertainty (usually we have not one but many models

related to the physical system)

(ix) decision uncertainty (to use the model to influence real world outcomes,

we need to relate things in the world that we can influence to inputs to the

simulator and through outputs to actual impacts. These links are uncertain.)
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General form

Different physical models vary in many aspects, but the formal structures for

analysing the physical system through computer simulators are very similar

(which is why there is a common underlying methodology).

Each simulator can be conceived as a function f(x), where

x: input vector, representing unknown properties of the physical system;

f(x): output vector representing system behaviour.

Interest in general qualitative insights plus some of the following.

the “appropriate” (in some sense) choice, x∗, for the system properties x,

how informative f(x∗) is for actual system behaviour, y.

the use that we can make of historical observations z, observed with error on a

subset yh of y, both to test and to constrain the model,

the optimal assignment of any decision inputs, d, in the model.

[In a climate model, yh might correspond to historical climate outcomes over

space and time, y to current and future climate, and the “decisions” might

correspond to different policy relevant choices such as carbon emission

scenarios.]
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of the system, we can write z = fh(x
∗), invert fh to find x∗, learn about all

future components of y = f(x∗) and choose decision elements of x∗ to

optimise properties of y.

COMMENT: This would be very hard.

In practice, the observations z are made with error, and model is not the same

as physical system so we must separate the uncertainty representation into two

relations and carry out statistical inversion/optimisation:

z = yh ⊕ e, y = f(x∗)⊕ ǫ

where e, ǫ have some appropriate probabilistic specification, possibly involving

parameters which require estimation.

(a⊕ b means a+ b where a, b are independent.)

COMMENT: This is much harder.

COMMENT And we still haven’t accounted for condition uncertainty,

multi-model uncertainty, etc.



RAPID-WATCH

What are the implications of RAPID-WATCH observing system data and other

recent observations for estimates of the risk due to rapid change in the MOC?

In this context risk is taken to mean the probability of rapid change in the MOC

and the consequent impact on climate (affecting temperatures, precipitation,

sea level, for example). This project must:

* contribute to the MOC observing system assessment in 2011;

* investigate how observations of the MOC can be used to constrain estimates

of the probability of rapid MOC change, including magnitude and rate of

change;

* make sound statistical inferences about the real climate system from model

simulations and observations;

* investigate the dependence of model uncertainty on such factors as changes

of resolution;

* assess model uncertainty in climate impacts and characterise impacts that

have received less attention (eg frequency of extremes).

The project must also demonstrate close partnership with the Hadley Centre.
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Subjectivist Bayes

In the subjectivist Bayes view, a probability statement is the uncertainty

judgement of a specified individual, expressed on the scale of probability. This

interpretation has a well-defined and operational meaning.

In this interpretation, any probability statement is the judgement of a named

individual, so we should speak not of “the probability of rapid climate change”,

but instead of this expert’s probability or that expert’s probability (or this group

of experts shared probability) of rapid climate change.

So, a natural objective of a scientifically rigorous uncertainty analysis should be

probabilities which are

asserted by at least one person, expert in the area

for reasons that are open to outside scrutiny

including consideration of the range of alternative probability judgements which

could plausibly be reached by other experts in the area
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must be converted to uncertainties. However, we do have a choice.

We make expectation, rather than probability, the primitive for the theory,

following de Finetti “Theory of Probability”(1974,1975).

He chooses expectation over probability as, if expectation is primitive, then we

can choose to make as many or as few expectation statements as we choose,

whereas, if probability is primitive, then we must make all of the probability

statements before we can make any of the expectation statements.

(As any probability is the expectation of the indicator function for the

corresponding event, we make all of the probability statements that we need

directly as expectations.)

Analysis based on expectation as primitive is termed (by me) Bayes linear

analysis (because of the linearity properties of expectation).

For a detailed account of this approach see

Bayes linear Statistics: Theory and Methods, 2007, Wiley

Michael Goldstein and David Wooff
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We can analyse expectations directly using the Bayes linear approach, in which

we make direct prior specifications for that collection of means, variances and

covariances which we are able to assess, and update these by linear fitting

Suppose that we have two collections of random quantities, namely vectors

B = (B1, ..., Br), D = (D0, D1, ..., Ds) where D0 = 1. We observe D

The adjusted or Bayes linear expectation and variance for B given D are

ED[B] = E(B) + Cov(B,D)Var(D)−1(D − E(D)),
VarD[B] = Var(B)− Cov(B,D)Var(D)−1Cov(D,Z)

Working with expectations has the advantages that the uncertainty

specification is simpler, the analysis is much faster and more straightforward

and there are rigorous foundations for the approach.

In practice, we may choose a mix of expectation and probability based

methods. Here our focus is on the expectation based methodology.
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system properties (the inputs to the model)

affect system behaviour (the output of the model)

using two types of simplification:

(i) we approximate the properties of the system (as these properties are too

complicated to describe fully and anyway we don’t know them)

(ii) we approximate the rules for finding system behaviour given system

properties (because of necessary mathematical simplifications, simplifications

for numerical tractability, and because we do not fully understand the physical

laws which govern the process).

Problems arise when we forget these simplifications and confuse the analysis

of the model with the corresponding analysis for the physical system itself.
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Structural uncertainty analysis

Models do not produce statements about reality, however carefully they are

analysed. Such statements require structural uncertainty assessment, taking

account the mismatch between the simulator and the physical system.

One of the simplest, and most popular, approaches is to suppose that there is

an appropriate choice of system properties x∗ (currently unknown), so that

f(x∗) contains all the information about the system:

y = f(x∗)⊕ ǫ

where ǫ, the model or structural discrepancy, has some appropriate

probabilistic specification, possibly involving parameters which require

estimation, and is taken to be independent of f, x0, e.

Careful structural uncertainty assessessment is crucial. Two aspects:

(i) Internal discrepancy: aspects we assess by simulator experiments

(ii) External discrepancy: inherent limitations of modelling process
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What does the simulator f tell us about the system y?

Consider both our inputs x and the simulator f as abstractions/simplifications

of real physical quantities and processes (through approximations in physics,

solution methods, level of detail, limitations of current understanding).

These form approximations to a much more realistic simulator f∗, for which

real, physical x∗ would be the best input,

[in the sense that (y − f∗(x∗)) would be judged independent of (x∗, f∗).]

We call f∗ the reified simulator (from reify: to treat an abstract concept as if it

was real).

Our model f is informative for y because f is informative for the more

elaborate model f∗ which is informative for y.

We can’t evaluate f∗, but we can “emulate” it.
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1. We start with the simple form for model discrepancy

2. We link the simulator to the reified form
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Uncertainty analysis, for high dimensional problems, is even more challenging if

the function f(x) is expensive, in time and computational resources, to

evaluate for any choice of x. [For example, large climate models.]

In such cases, f must be treated as uncertain for all input choices except the

small subset for which an actual evaluation has been made.

Therefore, we must construct a description of the uncertainty about the value of

f(x) for each x.

Such a representation is often termed an emulator of the function - the

emulator both suggests an approximation to the function and also contains an

assessment of the likely magnitude of the error of the approximation.

We use the emulator either to provide a full joint probabilistic description of all

of the function values (full Bayes) or to assess expectations variances and

covariances for pairs of function values (Bayes linear).
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We may represent beliefs about component fi of f , using an emulator:

fi(x) =
∑

j βijgij(x)⊕ ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions

of x, ui(x) is a weakly second order stationary stochastic process, with (for

example) correlation function

Corr(ui(x), ui(x
′)) = exp(−(‖x−x′‖

θi
)2)

Bg(x) expresses global variation in f . u(x) expresses local variation in f
We fit the emulators, given a collection of carefully chosen model evaluations,

using our favourite statistical tools - generalised least squares, maximum

likelihood, Bayes - with a generous helping of expert judgement.

We need careful (multi-output) experimental design to choose informative

model evaluations, and detailed diagnostics to check emulator validity.
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Linked emulators

If the simulator is really slow to evaluate, then we emulate by jointly modelling

the simulator with a fast approximate version, f ′, plus older generations of the

simulator which we’ve already emulated and so forth.

So, for example, based on many fast simulator evaluations, we build emulator

f ′
i(x) =

∑
j β

′
ijgij(x)⊕ u′i(x)

We use this form as the prior for the emulator for fi(x).
Then a relatively small number of evaluations of fi(x), using relations such as

βij = αiβ
′
ij + γij

lets us adjust the prior emulator to an appropriate posterior emulator for fi(x).



History matching

Model calibration aims to identify “true” input parameters x∗. However



History matching

Model calibration aims to identify “true” input parameters x∗. However

(i) We may not believe in a unique true input value for the model;



History matching

Model calibration aims to identify “true” input parameters x∗. However

(i) We may not believe in a unique true input value for the model;

(ii) We may be unsure whether there are any good choices of input parameters

(due to model deficiencies)



History matching

Model calibration aims to identify “true” input parameters x∗. However

(i) We may not believe in a unique true input value for the model;

(ii) We may be unsure whether there are any good choices of input parameters

(due to model deficiencies)

(iii) Full Bayes calibration analysis may be very difficult/non-robust.



History matching

Model calibration aims to identify “true” input parameters x∗. However

(i) We may not believe in a unique true input value for the model;

(ii) We may be unsure whether there are any good choices of input parameters

(due to model deficiencies)

(iii) Full Bayes calibration analysis may be very difficult/non-robust.

A conceptually simple alternative is “history matching”, i.e. finding the collection

of all input choices x for which you judge the match of the model to the data,

‖z − fh(x)‖ to be acceptably small, using some ”‘implausibility measure”’

I(x) based on a natural probabilistic metric, accounting for emulator

uncertainty, condition uncertain, structural discrepancy, observational error etc.
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History matching via Implausibility

Using the emulator we can obtain, for each set of inputs x, the mean and

variance, E(fh(x)) and Var(fh(x)).

As zi = yi + ei, yi = fi(x
∗) + ǫi,

if x = x∗, then

Var(zi − E(fi(x))) = Var(fi(x)) + Var(ǫi) + Var(ei).

We can therefore calculate, for each output fi(x), the “implausibility” if we

consider the value x to be the best choice x∗, which is the standardised

distance between zi and E(fi(x)), which is

I(i)(x) = |zi − E(fi(x))|
2/[Var(fi(x)) + Var(ǫi) + Var(ei)]

[Large values of I(i)(x) suggest that it is implausible that x = x∗.]
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Using Implausibility measures

The implausibility calculation can be performed univariately, or by multivariate

calculation over sub-vectors. The implausibilities are then combined, such as

by using IM (x) = maxi I(i)(x), and can then be used to identify regions of x
with large IM (x) as implausible, i.e. unlikely to be good choices for x∗.

With this information, we can then refocus our analysis on the ‘non-implausible’

regions of the input space, by

(i) making more simulator runs

(ii) refitting our current emulators

(iii) emulating additional outputs (which were hard to emulate in the original

parameter space)

over such sub-regions and repeating the analysis.

This process is a form of iterative global search aimed at finding all choices of

x∗ which would give good fits to historical data.
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Forecasting

The mean and variance of f(x) are obtained from the mean function and

variance function of the emulator f for F . Using these values, we compute the

mean and variance of f∗ = f(x∗) by first conditioning on x∗ and then

integrating out x∗ (over the space remaining after the history match).

Given E(f∗), Var(f∗), and the model discrepancy, ǫ and sampling error e
variances, it is now straightforward to compute the joint mean and variance of

the collection (y, z) (as y = f∗ + ǫ, z = yh + e).

We now evaluate the adjusted mean and variance for yp adjusted by z using

the Bayes linear adjustment formulae. This analysis is tractable even for real

time control of large systems under complex forms of reification.

(When the forecast variance is large, then we have methods to improve

forecast accuracy.)
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Concluding comments

To assess our uncertainty about complex systems, it is enormously helpful to

have an overall (Bayesian) framework to unify all of the sources of uncertainty.

Within this framework, all of the scientific, technical, computational, statistical

and foundational issues can be addressed in principle.

Such analysis poses serious challenges, but they are no harder than all of the

other modelling, computational and observational challenges involved with

studying complex systems.

In particular,

Bayes (linear) multivariate, multi-level, multi-model emulation,

careful structural discrepancy modelling

iterative history matching and forecasting

gives a great first pass treatment for most large modelling problems.

Great resource: the Managing Uncertainty in Complex Models web-site

http://www.mucm.ac.uk/ (for references, papers, toolkit, etc.)

[MUCM is a consortium of U. of Aston, Durham, LSE, Sheffield, Southampton -

with Basic Technology funding. Now mutated into the MUCM community.]
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