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Application 1

Computing tolerance limits under the logistic regression model
for binary data.

I The problem has been motivated by an application of interest
to the U.S. Army.

I Testing of ballistic armor plates for protecting soldiers from
projectiles and shrapnel.

I The probability of penetration is a function of covariates such
as velocity of the projectile.

I The probability is modeled using the logistic regression model.

I A univariate problem under a discrete model.
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Application 2

Testing the homogeneity of the relative potencies in a
multivariate bioassay problem.

I Data obtained from several independent multivariate bioassays
performed at different laboratories or locations.

I The usual slope-ratio or parallel line assay model is assumed.

I A multivariate problem under a continuous model.
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Application 1: The ballistic problem
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Testing the ballistic resistance of personal body armor.

Armor plates are inserted into the soft body armor vests to
increase their protective abilities.

The plates come in a variety of sizes, using different materials.

The ballistic performance of these plates are tested against
different threats to evaluate their performance.

Covariates such as plate size, material used, and the velocity of the
projectile affect their performance.

While testing, a backing material (made of clay) is mounted on the
armor plate.
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Two observations are noted after a shot is fired:

(i) if there is penetration, and

(ii) in case of no penetration, the back face deformation (BFD),
which is the extent of indentation in a backing material.

The BFD is a continuous variable (measured in millimeters).

After performing n tests, the number of penetrations is noted,
along with the BFD measurements (in the no penetration cases).

Background information, including the protocols and procedures
used in the testing: National Institute of Justice Standards (2008),
reports from the National Research Council (2009) and the
National Science Academy (2010).
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The National Institute of Justice Standards (2008) require that a
sample be used to conclude if 80% or more of the BFD values are
below 44mm, with a confidence level of 95%.

In the absence of covariates, a N(µ, σ2) distribution is assumed.

Want to use the sample to conclude if at least 80% of the
population distribution is below the threshold value 44mm, with
95% confidence.

What is required is an upper tolerance limit.
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Tolerance limits and tolerance intervals

The upper tolerance limit is to be computed subject to the
condition that at least 80% of the population BFD values are
below the limit, with a confidence level of 95%.

Once such an upper tolerance limit is computed, we can verify if it
is less than the threshold value 44mm.

A tolerance limit having 80% content, and 95% confidence level.

A (0.80, 0.95) upper tolerance limit.
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Let X1, X2, ...., Xn be a random sample from a population.

Write X = (X1,X2, ....,Xn).

In order to define a tolerance interval, we need to specify its
content, say p, and confidence level, say 1− α.

The tolerance interval will be referred to as a p content and
(1− α) confidence, tolerance interval.

A (p, 1− α) tolerance interval.

The interval will be constructed using the random sample X , and
is required to contain a proportion p or more of the sampled
population, with confidence level 1− α.
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A (p, 1− α) one-sided tolerance interval of the form (−∞,U(X )]
is required to satisfy the condition

PX

{
PX

(
X ≤ U(X )

∣∣∣∣X)
≥ p

}
= 1− α

The interval (−∞,U(X )] is called a one-sided tolerance interval.

U(X ) is called a one-sided upper tolerance limit.

U(X ) is a 100(1− α)% upper confidence limit for the pth
percentile of X .
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A (p, 1− α) one-sided lower tolerance limit L(X ) is defined
similarly.

L(X ) is a 100(1− α)% lower confidence limit for the (1− p)th
percentile of X .

A (p, 1−α) two-sided tolerance interval (L(X ),U(X )) satisfies the
condition

PX

{
PX

(
L(X ) ≤ X ≤ U(X )

∣∣∣∣X)
≥ p

}
= 1− α.

That is the interval (L(X ),U(X )) contains at least a proportion p
of the population with confidence 1− α.
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The computation of the two-sided tolerance limit L(X ) and U(X )
does not reduce to the computation of confidence limits for
certain percentiles.

13 / 61



Tolerance intervals for a univariate normal population

X1, X2, ...,Xn: sample from N(µ, σ2).

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2.

A (p, 1− α) upper tolerance limit is X̄ + kS , where

k =
1√
n
tn−1;1−α(zp

√
n)

The above formula is recommended in the National Institute of
Justice Standards (2008), for computing an upper tolerance limit
for the BFD distribution.
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Upper tolerance limits under logistic regression

To compute an upper tolerance limit
on the number of penetrations:

Let Y = 1 denote armor plate penetration, Y = 0 otherwise.

x: an s × 1 vector of covariates (discrete, as well as continuous)

National Institute of Justice Standards (2008) recommends the
logistic regression model for the probability of penetration as a
function of the covariates:

P(Y = 1) = π(x) =
exp(β0 + x′β)

1 + exp(β0 + x′β)

β0, β: unknown parameters.
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Suppose n independent binary responses Y1, Y2, ...., Yn are
available corresponding to the covariate vectors x1, x2, ...., xn,
respectively.

Consider m future responses, say Yn+1, Yn+2, ...., Yn+m

corresponding to the covariate vector x0.

Let W = W (x0) =
∑m

i=1 Yn+i , so that W is the number of
positive responses (i.e., number of penetrations) among the m
future responses.
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W ∼Binomial(m, π(x0)).

An upper tolerance limit for such a W , computed for a fixed x0, is
referred to as a point-wise upper tolerance limit.

An upper limit for W that satisfies the tolerance limit condition for
all values of the covariate vector (subject to appropriate bounds) is
called a simultaneous upper tolerance limit.
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Write y = (Y1,Y2, ....,Yn)
′.

An upper tolerance limit for W (x0), corresponding to a fixed
covariate vector x0, will be denoted by U(x0, y), and satisfies:

Py
{
P

W (x0)
[W (x0) ≤ U(x0, y)|y ] ≥ p

}
≥ 1− α,

where p is the content and 1− α is the confidence level.

U(x0, y)/m is then an upper tolerance limit for the proportion of
penetrations among the m future responses.
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An upper tolerance limit for the binomial distribution can be
obtained from an upper confidence limit for the probability π(x).

In the absence of covariates, tolerance limits for the binomial
distribution are derived in Hahn and Chandra (1981), Hahn and
Meeker (1991, Chapter 6), Zaslavsky (2007), Wang and Tsung
(2009) and Krishnamoorthy, Xia, and Xie (2011).
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Let W (x0) ∼Binomial(m, π(x0)).

Let kp(π(x0)) denote the pth percentile of W (x0).

If π̂U(x0) is a 100(1− α)% upper confidence limit for π(x0), then
kp(π̂U(x0)) is an upper tolerance limit for W (x0) with content p
and confidence level 1− α.

The computation of an accurate upper tolerance limit reduces to
the computation of an accurate 100(1− α)% upper confidence
limit for π(x0).

20 / 61



The signed log-likelihood ratio test (SLRT) statistic:

Let
ψ = ψ(x0) = logit(π(x0)) = β0 + x′0β,

π(x) =
exp(β0 + x′β)

1 + exp(β0 + x′β)
=

exp(ψ + (x− x0)′β)

1 + exp(ψ + (x− x0)′β)
.

Let θ′ = (ψ,β′)

ℓ(θ): the log-likelihood function

θ̂: the MLE of θ

θ̂ψ: the constrained MLE of θ, keeping ψ fixed.
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The signed log-likelihood ratio test statistic is given by

r(ψ) = sign(ψ̂ − ψ)
[
2{ℓ(θ̂)− ℓ(θ̂ψ)}

]1/2
,

where sign(x) is +1 or −1, depending on whether x is positive or
negative, respectively.

r(ψ) has an asymptotic standard normal distribution ((O(n−1/2)).
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Modified Signed Log-Likelihood Ratio Test (MSLRT) Statistic:

Suggested by Davison, Fraser and Reid (2006) in order to achieve
improved small sample performance.

Applicable to general models for discrete data.

Improved version:

r∗(ψ) = r(ψ) +
1

r(ψ)
ln

(
q(ψ)

r(ψ)

)
.

Involves a factor q(ψ)

r(ψ) has an asymptotic standard normal distribution ((O(n−1)).
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Derivation of q(ψ):

v i =
dπ(xi )

dθ

∣∣∣∣
θ=ˆθ

=
exp(ψ̂ + (xi − x0)′β̂)[

1 + exp(ψ̂ + (xi − x0)′β̂)
]2 (1, (xi − x0)

′)′

ϕ(θ) =
n∑

i=1

[
ψ + (xi − x0)

′β)
]
v i .

dψ

dϕ
=

[
dϕ

dθ

]−1 dψ

dθ
=

[
n∑

i=1

v i
{
1, (xi − x0)

′}]−1

(1, 0, 0, ...., 0)′

χ(θ) =
[dψ/dϕ]′

||dψ/dϕ||

∣∣∣∣
θ=ˆθψ

× ϕ(θ).
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Jθθ(θ): observed information matrix

ϕθ(θ): derivative of ϕ(θ) with respect to θ

Jββ(θ): the (ββ)−block of Jθθ(θ)

ϕβ(θ): the derivative of ϕ(θ) with respect to β.
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q(ψ) = |χ(θ̂)−χ(θ̂ψ)|×

 |Jθθ(θ̂)| × |ϕθ(θ̂)|
−2

|Jββ(θ̂ψ)| × |ϕ′
β(θ̂ψ)ϕβ(θ̂ψ)|

−1


1/2

.

The MSLRT statistic is

r∗(ψ) = r(ψ) +
1

r(ψ)
ln

(
q(ψ)

r(ψ)

)
.

r(ψ) has an asymptotic standard normal distribution ((O(n−1))

Explicit expressions are available for all the quantities, except the
MLE θ̂ and the constrained MLE θ̂ψ.

Effort required to compute r∗(ψ) is the same as that required to
compute r(ψ).
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Performance of r(ψ) and r∗(ψ):

Numerical results on the coverage probabilities of upper confidence
limits for ψ.

Consider
logit(π(x)) = 6.907− 14.5x .

Nominal level = 95%.
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x = 0.3 x = 0.5 x = 0.7 x = 0.9

n r(ψ) r∗(ψ) r(ψ) r∗(ψ) r(ψ) r∗(ψ) r(ψ) r∗(ψ)

30 0.965 0.820 0.896 0.938 0.840 1.000 0.844 1.000
40 0.968 0.927 0.910 0.960 0.906 0.983 0.898 0.991
50 0.966 0.951 0.932 0.953 0.910 0.964 0.907 0.963
60 0.963 0.950 0.935 0.954 0.909 0.957 0.900 0.951
70 0.963 0.950 0.937 0.951 0.909 0.949 0.907 0.947
80 0.966 0.951 0.934 0.948 0.914 0.953 0.913 0.950
90 0.963 0.951 0.940 0.952 0.921 0.952 0.915 0.948
100 0.964 0.950 0.941 0.951 0.922 0.952 0.921 0.951

If the model involves several covariates and/or interactions, larger
sample sizes are required to guarantee satisfactory performance of
r∗(ψ).
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Example:

Armor plate penetration data obtained from n = 447 shots taken
at various velocities using a total of 149 plates, with three shots
per plate.

Among the 149 plates, there were 52 extra-large (XL), 46
extra-small (XS), and 41 medium (MD) plates.

The plate size is considered a factor due to possible lot to lot
differences as well as due to the overall surface area differences.

The shot number was included as a discrete covariate, with three
categories (since there were three shots per plate).

The logistic regression model also included an interaction between
shot number and velocity, and the interaction between plate size
and shot number.
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To compute upper tolerance limits for the number of penetrations
among m = 50 plates (representing a future lot size), at various
velocity values for each plate size and shot number.

Used 95% content and 95% confidence level.
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At low velocity values, the number of penetrations is expected to
be low, which is to be anticipated.

The plot can be used to draw conclusions regarding the velocity
values at which the number of penetrations remain low.

For the second and third shots, the extra-large plate size results in
a larger upper tolerance limit compared to the other two plate
sizes, at every fixed velocity value.
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Application 2. Testing homogeneity in
multivariate bioassays
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Pain relief data from a dental study reported in Laska et. al.
(1983).

Standard treatment (S): 500mg of acetaminophen given as 1, 2,
or 3 tablets (dosage levels of the standard treatment are 500mg,
1000 mg and 1500 mg).

Test treatment (T ): same three dosage levels along with 65 mg of
caffeine.

Two pain intensity scores are recorded on each patient, so that we
have bivariate data.

(yS1, yS2)
′: Data on the standard treatment

(yT1, yT2)
′: Data on the test treatment

Data obtained from three locations.
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Location 1 Location 2 Location 3

dose yS1 yS2 dose yS1 yS2 dose yS1 yS2
500 6.5 0.5 500 0.0 0.0 500 7.5 11.5
500 0.0 0.0 500 6.0 9.5 500 8.0 12.0
500 7.0 10.0 500 8.0 11.5 500 4.0 8.0
500 1.0 3.5 1000 3.0 5.0 500 4.0 7.0
1000 8.5 12.0 1000 5.0 8.5 1000 2.0 3.5
1000 10.0 14.0 1500 4.0 7.5 1000 8.0 12.0
1000 6.5 7.5 1500 4.5 7.5 1000 1.0 1.0
1000 1.0 4.0 1500 6.0 9.5 1000 8.0 12.0
1000 3.5 4.5 1500 3.5 7.0
1500 7.0 10.5 1500 1.0 1.0
1500 3.0 6.0 1500 8.0 12.0
1500 6.0 8.0 1500 4.0 8.0
1500 3.0 5.0
1500 6.5 10.0
1500 3.5 6.5
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Location 1 Location 2 Location 3

dose yT1 yT2 dose yT1 yT2 dose yT1 yT2

500 3.5 6.0 500 5.0 8.5 500 6.0 9.0
500 5.0 8.0 500 6.0 9.5 500 7.5 11.5
500 1.0 4.0 1000 5.0 8.0 500 8.0 12.0
1000 10.5 14.5 1000 6.0 9.5 500 6.5 10.0
1000 6.0 7.5 1000 4.5 6.5 1000 8.0 12.0
1500 3.5 8.0 1500 7.0 10.5 1000 7.5 11.5
1500 10.0 14.0 1500 7.0 11.0 1000 0.0 0.0

1500 5.0 8.5 1500 6.0 10.0
1500 4.0 4.0 1500 7.5 11.5

1500 8.0 12.0
1500 7.5 11.5
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Data has been analyzed using a parallel-line assay model.

First consider a single bioassay.

Standard treatment S is assayed at mS doses xS1, . . . , xSmS
, with

nSj replicates for dose xSj .

Test treatment T is assayed at mT doses xT1, . . . , xTmT
, with nTj ′

replicates for dose xTj ′ .

p × 1 vector of responses:

ySjk (k = 1, 2, ...., nSj) at dose level xSj

yTj ′k ′ (k ′ = 1, 2, ...., nTj ′) at dose level xTj ′ .
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Parallel-line assay model:

ySjk = β0 + βxSj + ϵSjk

yTj ′k ′ = β0 + β(µ+ xTj ′) + ϵTj ′k′ .

β0, β: unknown p × 1 vectors

µ: unknown log-relative potency

ϵSjk , ϵTj ′k′ : independent ∼ Np(0,Σ).

Typically, xSj and xTj ′ are log doses.
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A canonical form

(
u

v

)
∼ N2p

[(
β
µβ

)
,D ⊗Σ

]
,

M ∼ Wp

(
Σ

m
,m

)
, where D is a known matrix.

When there are k independent multivariate bioassays,(
u i

v i

)
∼ N2p

[(
βi

µiβi

)
,Di ⊗Σi

]
,

M i ∼ Wp

(
Σi

mi
,mi

)
.

Di ’s: known matrices,

βi ’s: unknown p × 1 vectors,

µi ’s: unknown log-relative potencies,

Σi ’s: unknown p × p positive definite matrices, i = 1, 2, ...., k. 39 / 61



Two problems of interest:

(i) Develop a test for the null hypothesis µ1 = µ2 = .... = µk (the
relative potencies are homogeneous across the different studies).

(ii) Assuming that µ1 = µ2 = .... = µk = µ, derive a confidence
interval for µ.

Here we address problem (i).
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Likelihood based methods assuming that the Σi ’s are equal:

Volund (1982)

Meisner, Kushner and Laska (1986)

Srivastava (1986)

Hanusz (1995)

Chen, Carter, Hubert and Kim (1999).
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Higher order inference

y : n × 1 vector of observations whose distribution depends on a
d × 1 parameter vector θ.

ℓ(θ) = ℓ(θ; y): the log-likelihood function.

θ = (ψ,λ′)′, where ψ is an b × 1 parameter of interest and λ is a
nuisance parameter.

θ̂ = (ψ̂, λ̂
′
)′: MLE

λ̂ψ: constrained MLE of λ for a fixed ψ,

θ̂ψ = (ψ, λ̂
′
ψ)

′.

42 / 61



Let
w(ψ) = 2

{
ℓ(θ̂)− ℓ(θ̂ψ)

}
,

so that w(ψ) has an asymptotic chisquare distribution with df = b
(LRT).

Tail area approximation has first order accuracy.

Modifications due to Skovgaard (2001) to guarantee second order
accuracy.
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ℓθ(θ): score function

ℓθ(θ1) and ℓθ(θ2): the score function ℓθ(θ), evaluated at two
parameter points θ1 and θ2.

Define the d × d matrix S and the d × 1 vector q as

S = Covθ1

{
ℓθ(θ1), ℓθ(θ2)

}
|θ1 = θ̂,θ2 = θ̂ψ

q = Covθ1

{
ℓθ(θ1), ℓ(θ1)− ℓ(θ2)

}
|θ1 = θ̂,θ2 = θ̂ψ.

The covariances given above are first obtained at θ = θ1, and then
evaluated at θ1 = θ̂ and θ2 = θ̂ψ.
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J(θ) and I (θ): the observed and expected information matrices,

Jλλ(θ): the λλ−block of J(θ).
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Let

γ(ψ) =
|I (θ̂ψ)|1/2|I (θ̂)|1/2

|S ||Jλλ(θ̂ψ)−1/2|

∣∣∣[I (θ̂ψ)S−1J(θ̂)I (θ̂)−1S]λλ

∣∣∣−1/2

×

{
ℓ′θ(θ̂ψ)S−1I (θ̂)J(θ̂)−1S I (θ̂ψ)−1ℓθ(θ̂ψ)

}s/2

w(ψ)b/2−1 ℓ′
θ
(θ̂ψ)S−1q

Skovgaard (2001) has proposed two modified statistics:

w∗(ψ) = w

(
1− 1

w
ln γ

)2

,

w∗∗(ψ) = w − 2 ln γ

The statistics w∗ and w∗∗ have asymptotic chisquare distributions
with df = b, where b is the dimension of ψ. The relative error is
O(n−1).

Skovgaard, I. M. (2001). Likelihood asymptotics. Scandinavian
Journal of Statistics 28, 3–32.
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Testing the Homogeneity of the Relative Potencies

Canonical form for k independent multivariate bioassays:(
u i

v i

)
∼ N2p

[(
βi

µiβi

)
,Di ⊗Σi

]
,

M i ∼ Wp

(
Σi

mi
,mi

)
.

To test H0 : µ1 = µ2 = .... = µk .

Take ψ to be k − 1 orthogonal contrasts among the µi ’s, so that
we have H0: ψ = 0.
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To compare the likelihood ratio test based the chisquare
distribution of w(ψ), and the higher order modifications w∗(ψ)
and w∗∗(ψ).

The higher order modifications have been implemented after
obtaining the score vector, the observed and expected information
matrices, the matrix S and the vector q.

These quantities can be obtained explicitly.

Effort required to compute w∗(ψ) and w∗∗(ψ) is the same as that
required to compute w(ψ).
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Type I error probabilities of the tests based on w(ψ) (the LRT),
w∗(ψ) and w∗∗(ψ), for a 5% significance level when

(m1,m2,m3)=(5, 5, 5); bivariate case
δ1 δ2 δ3 w w∗ w∗∗

–0.9 –0.9 –0.9 0.2134 0.0657 0.0471
0.9 0.2130 0.0630 0.0443

0.1 –0.9 0.2148 0.0671 0.0481
0.9 0.2153 0.0619 0.0431

0.9 –0.9 0.2102 0.0630 0.0448
0.9 0.2128 0.0628 0.0442

0.9 –0.9 –0.9 0.2212 0.0690 0.0504
0.9 0.2215 0.0664 0.0488

0.1 –0.9 0.2244 0.0655 0.0460
0.9 0.2175 0.0651 0.0476

0.9 –0.9 0.2263 0.0706 0.0494
0.9 0.2222 0.0677 0.0484
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Type I error probabilities of the tests based on w(ψ) (the LRT),
w∗(ψ) and w∗∗(ψ), for a 5% significance level when

(m1,m2,m3)=(20, 20, 20); bivariate case.
δ1 δ2 δ3 w w∗ w∗∗

–0.9 –0.9 –0.9 0.0751 0.0460 0.0452
0.9 0.0783 0.0486 0.0474

0.1 –0.9 0.0775 0.0517 0.0509
0.9 0.0796 0.0511 0.0504

0.9 –0.9 0.0815 0.0516 0.0505
0.9 0.0783 0.0475 0.0465

0.9 –0.9 –0.9 0.0871 0.0539 0.0527
0.9 0.0813 0.0501 0.0484

0.1 –0.9 0.0833 0.0527 0.0516
0.9 0.0793 0.0520 0.0510

0.9 –0.9 0.0777 0.0484 0.0477
0.9 0.0819 0.0519 0.0505
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Example (continued)

Pain relief data from a dental study reported in Laska et. al.
(1983).

Standard treatment: 500mg of acetaminophen given as 1, 2, or 3
tablets (dosage levels of the standard treatment are 500mg, 1000
mg and 1500 mg).

Test treatment: same three dosage levels along with 65 mg of
caffeine.

Two pain intensity scores are recorded on each patient, so that we
have bivariate data.

(yS1, yS2)
′: Data on the standard treatment

(yT1, yT2)
′: Data on the test treatment

Data obtained from three locations.
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Location 1 Location 2 Location 3

dose yS1 yS2 dose yS1 yS2 dose yS1 yS2
500 6.5 0.5 500 0.0 0.0 500 7.5 11.5
500 0.0 0.0 500 6.0 9.5 500 8.0 12.0
500 7.0 10.0 500 8.0 11.5 500 4.0 8.0
500 1.0 3.5 1000 3.0 5.0 500 4.0 7.0
1000 8.5 12.0 1000 5.0 8.5 1000 2.0 3.5
1000 10.0 14.0 1500 4.0 7.5 1000 8.0 12.0
1000 6.5 7.5 1500 4.5 7.5 1000 1.0 1.0
1000 1.0 4.0 1500 6.0 9.5 1000 8.0 12.0
1000 3.5 4.5 1500 3.5 7.0
1500 7.0 10.5 1500 1.0 1.0
1500 3.0 6.0 1500 8.0 12.0
1500 6.0 8.0 1500 4.0 8.0
1500 3.0 5.0
1500 6.5 10.0
1500 3.5 6.5
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Location 1 Location 2 Location 3

dose yT1 yT2 dose yT1 yT2 dose yT1 yT2

500 3.5 6.0 500 5.0 8.5 500 6.0 9.0
500 5.0 8.0 500 6.0 9.5 500 7.5 11.5
500 1.0 4.0 1000 5.0 8.0 500 8.0 12.0
1000 10.5 14.5 1000 6.0 9.5 500 6.5 10.0
1000 6.0 7.5 1000 4.5 6.5 1000 8.0 12.0
1500 3.5 8.0 1500 7.0 10.5 1000 7.5 11.5
1500 10.0 14.0 1500 7.0 11.0 1000 0.0 0.0

1500 5.0 8.5 1500 6.0 10.0
1500 4.0 4.0 1500 7.5 11.5

1500 8.0 12.0
1500 7.5 11.5
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Data has been analyzed using a parallel-line assay model.

m1 = 22, m2 = 13, m3 = 19

The hypothesis of equality of the covariance matrices at the three
locations is rejected (p-value less than 0.0001).

For testing the homogeneity of the relative potencies, the different
test statistics have values w(ψ) = 4.164, w∗(ψ) = 1.963 and
w∗∗(ψ) = 1.554.

The corresponding p-values are 0.1246, 0.3747 and 0.4597.

Thus we accept the null hypothesis of a common relative potency.
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Talk based on two articles:

Zimmer, Z., Park, D. and Mathew, T. (2014). Point-wise and
simultaneous tolerance limits under logistic regression.
Technometrics, 56, 282-290.

Sharma, G., Mathew, T. and Bebu, I. (2014). Combining
multivariate bioassays: Accurate inference using small sample
asymptotics. Scandinavian Journal of Statistics, 41, 152-166.

R-codes are available

55 / 61



REFERENCES

Barndorff-Nielsen, O. E. (1991). Modified signed log-likelihood
ratio. Biometrika, 78, 557 – 563.

Brazzale, A. R., Davison, A. C. and Reid, N. (2007). Applied
Asymptotics: Case Studies in Small-Sample Statistics, Cambridge:
Cambridge University Press.

Chen, D. G., Carter, E. M., Hubert, J. J. and Kim, P. T. (1999).
Empirical Bayes estimation for combinations of multivariate
bioassays. Biometrics, 55, 1038–1043.

Davison, A.C., Fraser, D. A. S. and Reid, N. (2006). Improved
likelihood inference for discrete data. Journal of the Royal
Statistical Society, Series B, 68, 495-508.

56 / 61



Davison, A.C., Fraser, D. A. S., Reid, N. and Sartori, N. (2014).
Accurate directional inference for vector parameters in linear
exponential families. Journal of the American Statistical
Association, 109, 302-314.

DiCiccio, T. J., Martin, M. A. and Stern, S. E. (2001). Simple and
accurate one-sided inference from signed roots of likelihood ratios.
The Canadian Journal of Statistics, 67, 67-76.

Hahn, G. J. and Chandra, R. (1981). Tolerance intervals for
Poisson and binomial variables., Journal of Quality Technology, 13,
100-110.

Hahn, G. J. and Meeker, W. Q. (1991). Statistical Intervals: A
Guide to Practitioners, New York: John Wiley.

57 / 61



Hanusz, Z. (1995). Relative potency of two preparations in
two-way elimination of heterogeneity designs with multivariate
responses. Biometrics, 51, 1133–1139.

Krishnamoorthy, K. and Mathew, T. (2009). Statistical Tolerance
Regions: Theory, Applications and Computation, New York: Wiley.

Krishnamoorthy, K., Xia, Y. and Xie, F. (2011). A simple
approximate procedure for constructing tolerance intervals for
binomial and Poisson distributions. Communications in Statistics
-Theory and Methods, 40, 2443-2458.

Laska, E. M., Sunshine, A., Zighelbiom, I., Roure, C., Marrero, I.,
Wanderling, J. and Olson, N. (1983). Effect of caffeine on
acetaminophen analgesia. Clinical and Pharmocological
Therapeutics, 11, 498–427.

Meisner, M., Kushner, H. B. and Laska, E. M. (1986). Combining
multivariate bioassays. Biometrics 42, 421–427.

58 / 61



National Institute of Justice (2008). Ballistic Resistance of Body
Armor. NIJ Standard 0101.06. Washington, D.C.: National
Institute of Justice.

National Research Council (2009). Phase I Report on Review of
the Testing of Body Armor Materials for Use by the U.S. Army.
Washington, D.C.: The National Academies Press.

National Science Academy (2010). Testing of Body Armor
Materials for Use by the U.S. Army–Phase II: Letter Report.
Washington, D.C.: The National Academies Press.

59 / 61



Sharma, G. and Mathew, T. (2012). One-sided and two-sided
tolerance intervals in general mixed and random effects models
using small sample asymptotics. Journal of the American
Statistical Association, 107, 258-267.

Skovgaard, I. M. (1996). An explicit large-deviation approximation
to one-parameter tests. Bernoulli, 2, 145–165.

Skovgaard, I. M. (2001). Likelihood asymptotics. Scandinavian
Journal of Statistics, 28, 3–32.

Srivastava, M. S. (1986). Multivariate bioassay, combination of
bioassays and Fiellers theorem. Biometrics, 42, 131– 141.

60 / 61



Volund, A. (1982). Combination of multivariate bioassay.
Biometrics, 38, 181–190.

Wang, H. and Tsung, F. (2009). Tolerance intervals with improved
coverage probabilities for binomial and Poisson variables.
Technometrics, 51, 25-33.

Zaslavsky, B. G. (2007). Calculation of tolerance limits and sample
size determination for clinical trials with dichotomous outcomes.
Journal of Biopharmaceutical Statistics, 17, 481-491.

61 / 61


