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1 Introduction

Quasiminimizers have been previously used as tools in studying regularity of
minimizers of variational integrals. However, quasiminimizers cover a wide
range of applications and their properties are based only on the minimiza-
tion of the variational integrals instead of the corresponding Euler equation.
For example, regularity properties as Hölder continuity and Lp–estimates are
consequences of the quasiminimizing property. The theory of quasiminimiz-
ers can be easily extended to metric measure spaces since the theory uses the
absolute value of the gradient and not more subtle properties of the deriva-
tive, see [KM1], [KiM] and [Sh1–2]. From the theory of quasiminimizers one
can also learn which properties of p–harmonic functions and other potential
functions are stable under perturbations of (small) energy changes.

From the potential theoretic point of view quasiminimizers have several
drawbacks:

• no unique solution for the Dirichlet problem

• no comparison principle

• quasiminimizers do not form a sheaf

• no linearity

Instead of using quasiminimizers as tools, the objective of these lectures
is to show that quasiminimizers have a fascinating theory themselves. In
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particular, they form a basis for nonlinear potential theoretic model with
interesting features. The following aspects of quasiminimizers are considered:

• Definitions

• Quasiminimizers in R

• Constructions for quasiminimizers

• Capacity estimates

• Open problems

In the preliminary Section 2 some basic concepts of Sobolev spaces and
capacity are explained.

2 Preliminaries

We use the standard definition for the first order Sobolev space W 1,p(Ω).
We recall some properties of this space. Let Ω be an open set in Rn and
1 ≤ p < ∞. A (real valued) function v belongs to W 1,p(Ω) if and only if
v ∈ Lp(Ω) and its distributional partial derivatives ∂iv, i = 1, ..., n, belong
to Lp(Ω). We let ∇v = (∂1v, ..., ∂nv) denote the distributional gradient of v.
Being the distributional gradient of v means that

∫

Ω
v∇ϕdx = −

∫

Ω
∇vϕ dx

holds for all ϕ ∈ C1
0(Ω). The space W 1,p(Ω) is a Banach space under the

norm
‖ v ‖W 1,p(Ω)=‖ v ‖1,p=‖ v ‖p + ‖ |∇v| ‖p .

Here ‖ v ‖p=‖ v ‖Lp(Ω) refers to the standard Lp–norm

(
∫

Ω
|v|p dx)1/p

of a function v in Ω. The space W 1,p
loc (Ω) consists of all functions v such that

v|Ω′ belongs to W 1,p(Ω′) for all open Ω′ ⊂⊂ Ω, i.e. Ω′ is a compact subset of
Ω. The space C1(Ω) as well the space of locally lipschitz functions are dense
in W 1,p

loc (Ω).
The first order Sobolev space space W 1,p(Ω) is also a lattice, i.e. max(u, v)

and min(u, v) belong to W 1,p(Ω) whenever u, v ∈ W 1,p(Ω).
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The concept of capacity plays an important role in the theory of Sobolev
spaces and Potential Theory. If C is a compact subset of Ω, then the pair
E = (C, Ω) is called a condenser. The p–capacity of E is defined as

cappE = inf
∫

Ω
|∇ϕ|p dx (1)

where the infimum is taken over all functions ϕ ∈ C∞
o (Ω) such that ϕ = 1 on

C. There is a standard way to extend the concept of the p–capacity first to
condensers (U, Ω) where U is an open set in Ω and then to condensers (V, Ω)
where V is an arbitrary subset of Ω, see [HKM, Chapter 2]. A set V is of
p–capacity zero if capp(V, Ω) = 0 for all open sets Ω. Sets of p–capacity zero
have a similar role in the theory of Sobolev spaces as sets of measure zero in
the theory of Lp–spaces. Note that for 1 < p < n a set V ⊂ Rn of p–capacity
zero has Hausdorff dimension at most n − p. For p > n such a set is empty
and for p = n all Hausdorff α > 0 measures of V are zero. The case n = 1 is
somewhat exceptional: for p ≥ 1 all sets of p–capacity zero are empty.

There is a closely related capacity Capp(C), called the p–Sobolev capacity
defined as

Capp(C) = inf ‖ v ‖1,p,Rn

where the infimum is taken over all functions v ∈ C1(Rn) such that v = 1 on
C. It has the advantage that there is no open set (except Rn) which includes
C. As above this definition is extended to an arbitrary subset V of Rn. Sets
of p–capacity zero are the same under both definitions although the values
of capacities capp(V, Ω) and Capp(V ) are different in most cases.

The concept of the capacity makes it possible to give a more precise
interpretation for functions in W 1,p(Ω) than just equivalence classes in Lp(Ω):
a function v ∈ W 1,p(Ω) has a p–quasicontinuous version vo. This means
that v = vo a.e. in Ω and for each ε > 0 there is a closed set C ⊂ Ω
such vo|C is continuous and Capp(Ω \ C) < ε. A continuous function v ∈
W 1,p(Ω) is clearly quasicontinuous. It can be shown that if u and v are p–
quasicontinuous and u = v a.e. in Ω, then u = v except in a set of p–capacity
zero. This is abbreviated as u = v p–q.e. Hence functions in W 1,p(Ω) are
essentially defined pointwise up to a set of p–capacity zero. See [HKM,
Chaper 4]. Also a function v ∈ W 1,p

loc (Ω) has a so called ACLp–representative
(ACL = absolutely continuous on lines).

The space W 1,p
0 (Ω) consists of all functions v ∈ W 1,p(Ω) such that v can be

approximated in the norm ‖ v ‖1,p by functions in the class C1
0(Ω). The space

W 1,p
0 (Ω) is a closed subspace of W 1,p(Ω). Every function v ∈ W 1,p

0 (Ω) can be
extended by 0 to Rn \ Ω and the extended function belongs to W 1,p(Rn) =
W 1,p

0 (Rn). Conversely, a p–quasicontinuous function v ∈ W 1,p(Rn) belongs
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to W 1,p
0 (Ω) if (and only if) v = 0 p–q.e. in ∂Ω. Note that a continuous

function v ∈ W 1,p
0 (Ω) need not have boundary values 0 on ∂Ω. Boundary

behavior of v depends on the capacitary properties of ∂Ω.
Capacity can be used to define the space W 1,p

0 (E) for an arbitrary sub-
set E of Rn, namely W 1,p

0 (E) consists of all p–quasicontinuous functions in
W 1,p(Rn) such that u = 0 p–q.e. in Rn \ E. This definition is useful only if
E is measurable. It can be used, for example, if the set E is a level set of a
function in W 1,p(Rn).

Sobolev spaces on the real line are rather simple. If (a, b), −∞ ≤ a <
b ≤ ∞ is an open interval in R, then the space W 1,p((a, b)) consists of
Lp(a, b)–functions v which are absolutely continuous in each closed interval
[c, d] ⊂ (a, b) with v′ ∈ Lp(a, b). This requires v to be a quasicontinuous
version. If (a, b) is a finite interval, then the function v has a continuous
extension to the endpoints and v is absolutely continuous in [a, b]. A function
v ∈ W 1,p

0 ((a, b)), (a, b) a finite interval, can be characterized by the properties:
(i) v is absolutely continuous on [a, b], (ii) v(a) = 0 = v(b) and (iii) v′ ∈
Lp(a, b).

3 Definitions

Let Ω be an open subset of Rn, n ≥ 1, p > 1 and K ≥ 1. A function u in
the local Sobolev space W 1,p

loc (Ω) is called a (p,K)–quasiminimizer in Ω if for
all open sets Ω′ ⊂⊂ Ω

∫

Ω′

|∇u|p dx ≤ K
∫

Ω′

|∇v|p dx (2)

for all functions v such that v−u ∈ W 1,p
0 (Ω′). In general we keep the number

p fixed and use the abbreviation K–quasiminimizer. For K = 1 the function
u is minimizer and hence a p–harmonic function. This means that a function
u ∈ W 1,p

loc (Ω) is a 1–quasiminimizer if and only if u is a weak solution of the
Euler equation

∫

Ω
|∇u|p−2∇u · ∇ϕdx = 0 (3)

of the variational integral
∫

Ω
|∇u|p dx.

Here (3) is supposed to hold for all ϕ ∈ C1
o (Ω). If u ∈ C2(Ω), then (3) can

be written in the form
∇ · (|∇u|p−2∇u) = 0. (4)

However, solutions of (3) are, in general, in C1,α only.
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More general sets than open sets can be used in (2). If E is a measurable
set with compact closure in Ω, then

∫

E
|∇u|p dx ≤ K

∫

E
|∇v|p dx (5)

for every v with v − u ∈ W 1,p
0 (E). See [KM].

Example 3.1 Every (weak) solution u of the equation

∇ · A(x,∇u) = 0

where the operator A satisfies

α|h|p ≤ A(x, h) · h ≤ β|h|p, 0 < α ≤ β < ∞,

is a K–quasiminimizer with K = (β/α)p, see [HKM, p. 59].

Next we introduce an alternative definition for a quasiminimizer. In par-
ticular this is useful for quasiminimizers on the real line. The definition does
not involve the p–Dirichlet integral of the quasiminimizer u itself but only
that of minimizers, i.e. solutions of the p–harmonic equation with the same
boundary values as u.

Let u ∈ W 1,p
loc (Ω), p > 1. For each open set Ω′ ⊂⊂ Ω we let uΩ′ denote

the minimizer of the p–Dirichlet integral in Ω′ with boundary values u, i.e.
uΩ′ − u ∈ W 1,p

0 (Ω′) and uΩ′ is a solution of the p–harmonic equation (4) in
Ω′. Direct methods in the calculus of variations are used to show that such
a unique minimizer always exists, see [HKM, Chapter 5]. Condition (2) can
now be rewritten as

∫

Ω′

|∇u|p dx ≤ K
∫

Ω′

|∇uΩ′|p dx. (6)

Theorem 3.2 Suppose that u belongs to W 1,p
loc (Ω). Then u is a K–quasi-

minimizer in Ω if and only if for each open set Ω′ ⊂⊂ Ω and all disjoint

open sets Ω1, ..., Ωk ⊂ Ω′ it holds

∑

i

∫

Ωi

|∇uΩi
|p dx ≤ K

∫

Ω′

|∇uΩ′|p dx. (7)

Proof. The necessity of condition (7) is immediate.
For the converse we have to show (6) in every open set Ω′ ⊂⊂ Ω. Fix

an open set Ω′ and note that (7) holds for a countable collection of open
subsets Ω1, Ω2, ... of Ω′ as well. Form a Whitney decomposition {Qi} of Ω′

where the open cubes Qi are disjoint and ∪Qi = Ω′. For each j = 1, 2, ...
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subdivide every cube Qi, if necessary, to a finite number of disjoint cubes to
obtain a new sequence {Qj

i} of disjoint cubes so that every cube Qj
i satisfies

diam(Qj
i ) ≤ 1/j.

Next define for each j the function vj as

vj(x) = uQj

i
(x), x ∈ Qj

i , i = 1, 2, ...

= u(x), x ∈ Ω \ ∪iQ
j
i .

Now it easily follows that vj − u ∈ W 1,p
0 (Ω′) and by (7)

∫

Ω′

|∇vj|p dx ≤ K
∫

Ω′

|∇uΩ′ |p dx (8)

for each j. Since the sequence ∇vj is bounded in Lp(Ω′) and vj−u ∈ W 1,p
0 (Qj

i )
for each i and j, the Sobolev inequality yields

∫

Qj
i

|vj − u|p dx ≤ Cdiam(Qj
i )

p
∫

Qj
i

|∇(vj − u)|p dx

≤ Cj−p
∫

Qj

i

|∇(vj − u)|p dx

where C depends only on p and n. Summing over i we obtain
∫

Ω′

|vj − u|p dx ≤
∑

i

∫

Qj

i

|vj − u|p dx ≤ 2p+1Cj−p
∫

Ω′

|∇u|p dx

because ∫

Ω′

|∇vj|p dx ≤
∫

Ω′

|∇u|p dx

by he minimizing property of the function vj in each Qj
i . Thus vj → u in

Lp(Ω′).
Since the sequence ∇vj is bounded in Lp(Ω′) and vj → u in Lp(Ω′), pass-

ing to a subsequence if necessary, we may assume that ∇vj → ∇u weakly in
Lp(Ω′). By the lower semicontinuity of the Lp–norm in the weak convergence
we see that

∫

Ω′

|∇u|p dx ≤ lim inf
j→∞

∫

Ω′

|∇vj|p dx ≤ K
∫

Ω′

|∇uΩ′ |p dx

where (8) is used in the last step. This yields (6) and the proof is complete.

There is a version of Theorem 3.2 where the assumption u ∈ W 1,p
loc (Ω)

is not needed. To formulate the result we introduce some notation. Let
w be a continuous real valued function defined on the boundary ∂Ω of a
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bounded open set Ω of Rn. We let HΩ
w denote the Perron–Wiener–Brelot

solution associated with the p–harmonic equation (4) and with the boundary
values w, see [HKM, Chapter 9]. Since Ω is bounded and w is continuous
a unique Perron–Wiener–Brelot solution HΩ

w with boundary values w exists,
see [HKM, Theorem 9.26].

If u is a quasiminimizer, then u is locally Hölder continuous, see [CC] and
[KiM]. Hence the continuity assumption in Theorem 3.3 is not an essential
restriction.

Theorem 3.3 Suppose that u is continuous in Ω. Then u is a K–quasi–

minimizer in Ω if and only if for each open set Ω′ ⊂⊂ Ω and all disjoint

open sets Ω1, ..., Ωk ⊂ Ω′ it holds

∑

i

∫

Ωi

|∇HΩi
u |p dx ≤ K

∫

Ω′

|∇HΩ′

u |p dx < ∞. (9)

Proof. The proof is similar to that of Theorem 3.2. For the sufficiency
replace in the definition of the sequence vj the functions uQj

i
by the functions

H
Qj

i
u . Note that a cube is regular domain for the p–Dirichlet problem and

hence the function vj is continuous in Ω′. Now it is easy to see that the
sequence vj, j = 1, 2, ..., converges locally uniformly to u in Ω′ and hence no
Poincaré inequality is needed.

Open problem 3.4 Is it possible to relax the continuity assumption in The-
orem 3.3?

In the one dimensional case Theorem 3.2 takes a simple form.

Theorem 3.5 Suppose that p > 1, K ≥ 1, ∆ is an open interval in R and

u : ∆ → R is a function. Then u is a K–quasiminimizer if and only if for

all intervals [a, b] ⊂ ∆ it holds

k
∑

i=1

|u(xi+1) − u(xi)|p
(xi+1 − xi)p−1

≤ K
|u(b) − u(a)|p

(b − a)p−1
(10)

whenever a = x1 < x2 < ... < xk+1 = b is a partition of [a, b].

Proof. Since affine functions are minimizers in the 1–dimensional case for
all p, see [GG], and

∫ d

c
|f ′(t)|p dt =

|f(d) − f(c)|p
(d − c)p−1

(11)
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for an affine function f , (10) follows from Theorem 3.2 for a K–quasiminimizer
u.

To prove the sufficiency of (10) we first show that u is absolutely contin-
uous in any closed interval [a, b] ⊂ ∆. Let (ai, bi), i = 1, ..., k be a collection
of disjoint intervals in [a, b]. By the Hölder inequality and by (10) we obtain

(
∑

i

|u(bi) − u(ai)|)p ≤ (
∑

i

|u(bi) − u(ai)|p
|bi − ai|p−1

)(
∑

i

|bi − ai|)p−1

≤ K
|u(b) − u(a)|p

(b − a)p−1
(
∑

i

|bi − ai|)p−1

and this clearly implies absolute continuity of u on [a, b].
Condition (10) also implies that u′ ∈ Lp

loc(∆). Indeed, let [a, b] ⊂ ∆
and subdivide [a, b] into intervals of equal length < 1/i. Approximate u on
[a, b] by a piecewise linear function vi which equals u at the endpoints of
subintervals. Then vi converges uniformly to u in [a, b] and it follows from
(10), as in the proof of Theorem 3.2, that v′

i → u′ weakly in Lp([a, b]), at least
for a subsequence. Hence u′ ∈ Lp([a, b]) and the inequality (2) follows from
the lower semicontinuity of the norm with respect to the weak convergence,
see the proof for Theorem 3.2. The proof follows.

Remark 3.6 The condition (10) should be compared to the condition

j
∑

i=1

|u(xi+1) − u(xi)|p
(xi+1 − xi)p−1

≤ M < ∞ (12)

for a function u : [a, b] → R. Here x1, x2, ...xj+1 is any partition of [a, b].
Now (12) is equivalent to the fact that u is absolutely continuous on [a, b]
and u′ ∈ Lp([a, b]), p > 1. The sufficiency of (12) follows as in the proof
for Theorem 3.5 and the necessity is due to the Hölder inequality and the
estimate

|u(xi+1) − u(xi)| ≤
∫ xi

xi+1

|u′| dt.

Inequality (10) has a reverse nature since it gives the bound for the sum
in (12) in terms of the values of u at the endpoints of each interval [a, b].
Note that (10) is much stronger than (12). In particular (10) implies that u′

is locally integrable to some exponent q > p and that u is either constant or
strictly monotone.

A natural domain of definition for a quasiminimizer in R is a closed
interval [a, b]. Indeed, if u is a K–quasiminimizer in an open finite interval
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(a, b), then u has a continuous extension to [a, b] and

∫ d

c
|u′(t)|p dt ≤ K

|u(d) − u(c)|p
(d − c)p−1

(13)

holds for all intervals [c, d] ⊂ [a, b]. For this and other properties of one
dimensional quasiminimizers see [MS].

Open problem 3.7 It is easy to show that a non–constant (p,K)–quasiminimizer
u : R → R is quasisymmetric in the sense of Beurling and Ahlfors. Deter-
mine the quasisymmetry constant in terms of p and K. The case p = 2 is
the most interesting.

4 Constructions for quasiminimizers

Let u be a quasiminimizer. The following theorem gives a sufficient condition
for a function g so that the function u + g is again a quasiminimizer.

Theorem 4.1 Suppose that u is a K-quasiminimizer in Ω and g is a func-

tion in W 1,p
loc (Ω) such that

|∇g| ≤ c|∇u| (14)

a.e. in Ω where c ∈ [0, K−1/p). Then the function u + g is a K ′– quasimini-

mizer with

K ′ =
(1 + c)p

(K−1/p − c)p
. (15)

Proof. Fix an open set Ω′ ⊂⊂ Ω and for each function v ∈ W 1,p
loc (Ω) let

hv denote the minimizer of the p–Dirichlet integral with boundary values vin
Ω′, see the previous section. We need to show

∫

Ω′

|∇(u + g)|p dx ≤ K ′
∫

Ω′

|∇hu+g|p dx. (16)

The Minkowski inequality, the minimizing property of hu and hg, the
quasiminimizing property of u and (14) yield

‖ ∇hu+g ‖Lp(Ω′)=‖ ∇(hu+g − hg + hg) ‖Lp(Ω′)

≥‖ ∇(hu+g − hg) ‖Lp(Ω′) − ‖ ∇hg ‖Lp(Ω′)

≥‖ ∇hu ‖Lp(Ω′) − ‖ ∇g ‖Lp(Ω′)≥ K−1/p ‖ ∇u ‖Lp(Ω′) −c ‖ ∇u ‖Lp(Ω′)

= (K−1/p − c) ‖ ∇u ‖Lp(Ω′) .
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The Minkowski inequality, (14) and the above inequality imply

‖ ∇(u + g) ‖Lp(Ω′)≤‖ ∇u ‖Lp(Ω′) + ‖ ∇g ‖Lp(Ω′)

≤ (1 + c) ‖ ∇u ‖Lp(Ω′)≤
1 + c

K−1/p − c
‖ ∇hu+g ‖Lp(Ω′) .

This is the required inequality (16).

Remark 4.2 The upper bound for c in Theorem 4.1 is essentially sharp
as can be easily seen from one–dimensional examples. More precisely, the
function u(t) = t is a minimizer, i.e. 1–quasiminimizer, in R for all p > 1. If
we can now take

c = K−1/p = 1,

then the function g(t) = |t| satisfies |g′(t)| ≤ c|u′(t)| for a.e. t. However, u+g
is not a K ′– quasiminimizer for any K ′ < ∞ because it is neither strictly
monotone nor constant, see [GG]. Similar examples exist in all dimensions

Open problem 4.3 Radial quasiminimizers of power-type have been stud-
ied in the recent paper [BBM]. Very few additional constructions, besides
radial functions, solutions to ∇ · A(x,∇u) = 0 and Theorem 4.1, are known
for quasiminimizers. It would be interesting to know other constructions.
Radial quasiminimizers correspond, in some sense, one dimensional quasi-
minimizers in higher dimensional Euclidean spaces. It would be interesting
to know if they have ”extremal” properties (like, for instance, radial quasi-
conformal mappings).

5 Capacity estimates

Let Ω be an open and bounded subset of Rn, n ≥ 1 and p > 1. If C is a
compact subset of Ω, then the pair E = (C, Ω) is called a condenser. The
p–capacity of E is defined as

cappE = inf
∫

Ω
|∇ϕ|p dx (17)

where the infimum is taken over all functions ϕ ∈ C∞
o (Ω) such that ϕ = 1

on C, see Section 2. Let ϕ be as above. Now there is a unique function
u ∈ W 1,p(Ω) such that u − ϕ ∈ W 1,p

0 (Ω \ C) and

cappE =
∫

Ω
|∇u|p dx.
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Moreover, the function u is p–harmonic in Ω \ C, i.e. u is a solution of the
p–harmonic equation in Ω \C. Set u = 1 on C. The function u is called the
p–potential of C in Ω, see [HKM, Section 6.10].

Let u be the p–potential of C in Ω and t ∈ (0, 1). Set Ct = {x ∈ Ω :
u(x) ≥ t}. Although Ct need not be a compact set in Ω we can define the
p–capacity of the pair, also called a condenser, (Ct, Ω) as

capp(Ct, Ω) = inf
∫

Ω
|∇v|p dx (18)

where the infimum is now taken over all functions v such that v − u/t ∈
W 1,p

0 (Ω \ Ct) and v = 1 on C. Here we use the refined version of the the
space W 1,p

0 (Ω \Ct) consisting of all functions w ∈ W 1,p(Rn) such that w = 0
and w = 1 p–quasieverywhere in the complement of Ω and in Ct, respectively.
For this theory see Section 2 and [HKM, Chapter 4].

The basic equation between the p–capacities of the condensers (Ct, Ω)
and E is

tp−1capp(Ct, Ω) = cappE. (19)

Equation (19) becomes a double inequality

(
α

β
)p+1tp−1capp(Ct, Ω) ≤ cappE ≤ (

β

α
)p+1tp−1capp(Ct, Ω) (20)

if, instead of a p–potential, an A–potential u of C in Ω is used. Here A refers
to the degenerate second order partial differential equation

∇ · A(x,∇u) = 0 (21)

where the operator A satisfies

α|h|p ≤ A(x, h) · h ≤ β|h|p, 0 < α ≤ β < ∞, (22)

see [HKM, Lemma 6.19]. Equation (19) and inequality (20) are important
tools in the study of boundary behavior of p– and A–harmonic functions as
well as in the study of polar sets. We look for the corresponding estimates
for quasiminimizers.

Since quasimininimizers do not obey the comparison principle, which is
fundamental in Potential Theory, the capacity estimates of the type (20)
for quasiminimizers should be based on other methods than the proof for
(20). Here we develop a method which uses one dimensional quasiminimiz-
ers. For sharp estimates we need some special properties of one dimensional
quasiminimizers.
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A natural domain of definition for a quasiminimizer in R is a closed
interval [a, b]. Indeed, if u is a K–quasiminimizer in an open interval (a, b),
then u has a continuous extension to [a, b] and

∫ d

c
|u′(t)|p dt ≤ K

|u(d) − u(c)|p
(d − c)p−1

(23)

holds for all intervals [c, d] ⊂ [a, b]. For this and other properties of one
dimensional quasiminimizers see Section 3 and [MS].

We say that a K–quasiminimizer u : [0, 1] → [0, 1] is a normalized K–
quasiminimizer if u(0) = 0 and u(1) = 1. The following lemma is immediate.

Lemma 5.1 Suppose that u is a normalized (p,K)–quasiminimizer. Then

u(t) ≤ K1/pt(p−1)/p

for each t ∈ [0, 1].

Proof. By the Hölder inequality

u(t) =
∫ t

0
u′(s) ds ≤ t(p−1)/p(

∫ 1

0
u′(s)p ds)1/p

≤ t(p−1)/p[K
(u(1) − u(0))p

(1 − 0)p−1
]1/p = K1/pt(p−1)/p

as required.

Next we review some results from [MS] which will be needed in the sequel.
We use the same notation as in [MS] where the higher regularity properties
of one dimensional quasiminimizers were considered in detail. From [MS,
Theorem 4] it follows that there is a function p1 : (1,∞) × [1,∞) → (1,∞]
and for each triple (p,K, s) ∈ (1,∞) × [1,∞) × (1, p1(p,K

1/p)) a number
K1 = K1(p,K, s) such that if u is a normalized (p,K)–quasiminimizer, then
u is also a (s,K1)–quasiminimizer. The function p1 satisfies for each p ∈
(1,∞)and K ≥ 1:

p1(p,K) > p (24)

lim
K→1

p1(p,K) = ∞ = p1(p, 1) (25)

lim
K→∞

p1(p,K) = p (26)

and the number K1 has the property K1(p, 1, s) = 1 for each p, s > 1.
From the above property we obtain an improved version of Lemma 5.1:
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Corollary 5.2 Suppose that u is a normalized (p,K)–quasiminimizer. Then

for each s ∈ (1, p1(p,K
1/p))

u(t) ≤ K1(p,K, s)1/st(s−1)/s (27)

for every t ∈ [0, 1].

Remark 5.3 The only normalized 1–quasiminimizer is u(t) = t. Note that
(27) reduces to u(t) ≤ t for K = 1.

Suppose that u is a normalized (p,K)–quasiminimizer. Then u is strictly
increasing and continuous. By [MS, Theorem 14] there is a function p2 :
(1,∞) × [1,∞) → (1,∞] and for each q ∈ p2(p/(p − 1), K1/(p−1)) a num-
ber K2 = K2(p,K, q) such that the inverse function v of u is for each
q ∈ (1, p2(p/(p − 1), K1/(p−1))) also a (q,K2)–quasiminimizer. The function
p2 and the number K2 = K2(p,K, q) satisfy

lim
K→1

p2(p/(p − 1), K) = ∞ = p2(p/(p − 1), 1) (28)

lim
K→∞

p2(p/(p − 1), K) = 1 (29)

K2(p, 1, q) = 1. (30)

Remark 5.4 For p = 2 the functions p1(2, K) and p2(2, K) have explicit
expressions, see [MS],

p1(2,
√

K) = 1 +
√

K/(K − 1)

p2(2, K) =
√

K/(K − 1)

for K > 1. The aforementioned functions p1, p2 and the numbers K1, K2

can be numerically computed for all argument values, see [D’AS] and [MS].
Moreover, all these results are sharp. Note the open ended property for the
exponents s and q.

We state the counterpart to (18) as two separate theorems although their
proofs follow from the same principle. We let the functions p1, p2 and the
numbers K1, K2 be as above.

Suppose that E = (C, Ω) be a condenser in Rn, n ≥ 1, where Ω is a
bounded open set. Let u be a (p,K)– quasiminimizer in Ω\C with boundary
values 0 on ∂Ω, 1 on C, i.e. u − ϕ ∈ W 1,p

0 (Ω \ C) where ϕ ∈ C∞
0 (Ω) and

ϕ = 1 on C. Write Ct = {x ∈ Ω : u(x) ≥ t}.

13



Theorem 5.5 For each s ∈ (1, p1(p/(p − 1), K1/p) there is a number κ1 =
κ1(p,K, s) < ∞ such that

cappE ≤ κ1t
p−s/(s−1) capp(Ct, Ω). (31)

The number κ1 has the following property for each p > 1 and s ∈ (1, p1(p/(p−
1), K1/p(p−1)):

lim
K→1

κ1(p,K, s) = 1 = κ1(p, 1, s)

Remark 5.6 For K = 1 inequality (31) and the properties of p1 give cappE ≤
tp−1 capp(Ct, Ω). Inequality (31) does not reduce to the right hand side of
(20) if the A–potential u of C in Ω is considered as a quasiminimizer because
now an A–potential of C in Ω is a (β/α)p–quasiminimizer in Ω \ C. Since
p1(p/(p − 1), K1/p) > p/(p − 1), the exponent s can be chosen > p/(p − 1).

Proof for Theorem 5.5. Set u = 1 on C. Then u ∈ W 1,p(Ω) and write

Ωt = {x ∈ Ω : u(x) > t}, 0 ≤ t < 1.

Although Ωt need not be an open subset of Ω, for each 0 ≤ t < t′ ≤ 1
we can define a condenser (Ct′ , Ωt) and its p–capacity capp(Ct′ , Ωt) as before
using the refined Sobolev functions. Note that Ω0 = Ω provided that C is a
set of positive p–capacity and Ω is a domain. For each 0 ≤ t < t′ ≤ 1 the
quasiminimizing property of u yields

capp(Ct′ , Ωt) ≤ (t′ − t)−p
∫

Ωt\Ct′

|∇u|p dx ≤ Kcapp(Ct′ , Ωt). (32)

Fix an interval [a, b] ⊂ [0, 1] and let a = t0 < t1 < ... < tk = b be
a partition of [a, b]. Next we employ the well known separation inequality
for capacities of condensers, see [HKM, Theorem 2.6]: For the condensers
(Cti , Ωti−1

), i = 1, 2, ..., k, this gives

k
∑

i=1

capp(Cti , Ωti−1
)−1/(p−1) ≤ capp(Ctk , Ωt0)

−1/(p−1) (33)

because
Ctk ⊂ Ωtk−1

⊂ Ctk−1
⊂ Ωtk−2

⊂ ... ⊂ Ωt0 .

Set
ϕ(t) =

∫

{u(x)<t}
|∇u|p dx.

Then ϕ : [0, 1] → [0, β],

β =
∫

Ω\C
|∇u|p dx,
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is a continuous strictly increasing function with ϕ(0) = 0 and ϕ(1) = β. Now
(32) and (33) yield

k
∑

i=1

(ti − ti−1)
p/(p−1)(ϕ(ti) − ϕ(ti−1))

1/(1−p)

≤ K1/(p−1)(b − a)p/(p−1)(ϕ(b) − ϕ(a))1/(1−p). (34)

Note that ∇u = 0 almost everywhere on the set where u =const.
Let ψ : [0, β] → [0, 1] denote the inverse function of ϕ. Writing (34) for

the inverse function ψ we obtain

k
∑

i=1

(ψ(t′i) − ψ(t′i−1))
p/(p−1)(t′i − t′i−1)

1/(1−p)

≤ K1/(p−1)(ψ(b′) − ψ(a′))p/(p−1)(b′ − a′)1/(1−p) (35)

where ϕ(a) = a′, ϕ(b) = b′ and ϕ(ti) = t′i, i = 0, 1, ... , k. Thus (35) holds for
an arbitrary partition

a′ = t′0 < t′1 < ... < t′k = b′

of the interval [a′, b′] ⊂ [0, β]. By Theorem 3.5 the function ψ is a (p/(p −
1), K1/(p−1))–quasiminimizer. Since t → ψ(βt) is a normalized quasimini-
mizer, Corollary 5.2 yields for each s ∈ (1, p1(p/(p − 1), K1/p(p−1)))

ψ(βt) ≤ c
1/s
1 t(s−1)/s (36)

where c1 = c1(p,K, s). For the inverse function ϕ of ψ this means that

ϕ(t) ≥ βc
1/(1−s)
1 ts/(s−1), t ∈ [0, 1]. (37)

By the quasiminimizing property of u

capp(Ct, Ω) ≥ K−1
∫

{u<t}
|∇(

u

t
)|p dx = K−1t−pϕ(t)

and hence we obtain from (37)

capp(C, Ω) ≤ β ≤ c
1/(s−1)
1 t−s/(s−1)ϕ(t)

≤ Kc
1/(s−1)
1 tp−s/(s−1)capp(Ct, Ω).

It is easy to check that the number

κ1 = κ1(p,K, s) = Kc
1/(1−s)
1

has the required property. The proof follows.

The next theorem gives the counterpart of the left hand side of (20) for
quasiminimizers.
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Theorem 5.7 For each q ∈ (1, p2(p,K)) there is κ2 = κ2(p,K, q) such that

tp−(q−1)/q

κ2

capp(Ct, Ω) ≤ cappE. (38)

The number κ2 satisfies for each p > 1 and q ∈ (1, p2(p,K)):

lim
K→1

κ2(p,K, q) = 1 = κ2(p, 1, q).

Proof. We proceed as in the proof of Theorem 5.5. Since the function ϕ
is the inverse function of ψ and ψ is a (p/(p − 1), K1/(p−1)–quasiminimizer,
for each q ∈ (1, p2(p,K)), see Section 3, there is a number K2 = K2(p/(p −
1), K1/(p−1), q) such that the function ϕ is a (q,K2)–quasiminimizer in [0, 1].
Since ϕ/β is a normalized quasiminimizer, Corollary 5.2 yields

ϕ(t) ≤ K
1/q
2 t(q−1)/qβ, t ∈ [0, 1]

and since
capp(Ct, Ω) ≤ t−pϕ(t)

we obtain from the quasiminimizing property of u that

capp(C, Ω) ≥ β

K
≥ tp−(q−1)/q

KK
1/q
2

capp(Ct, Ω)

=
tp−(q−1)/q

κ2

capp(Ct, Ω)

where the number κ2 = KK
1/q
2 has the required property. The proof follows.

Remark 5.8 Remark 5.6 also applies to Theorem 5.7: For K = 1 inequality
(38) reduces to cappE ≥ tp−1 capp(Ct, Ω). However, the exponents and the
constants on the right and left hand side of (31) and (38) are different.

Open problem 5.9 Are the estimates (31) and (38) sharp for n ≥ 1? As J.
Björn pointed out the Hölder continuity result (27) in Corollary 5.2 need not
be sharp although the higher integrability exponent result for the derivative
of a one dimensional quasiminimizer is sharp.
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