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1 Introduction

Quasiminimizers have been previously used as tools in studying regularity of
minimizers of variational integrals. However, quasiminimizers cover a wide
range of applications and their properties are based only on the minimiza-
tion of the variational integrals instead of the corresponding Euler equation.
For example, regularity properties as Holder continuity and LP—estimates are
consequences of the quasiminimizing property. The theory of quasiminimiz-
ers can be easily extended to metric measure spaces since the theory uses the
absolute value of the gradient and not more subtle properties of the deriva-
tive, see [KM1], [KiM] and [Sh1-2]. From the theory of quasiminimizers one
can also learn which properties of p~harmonic functions and other potential
functions are stable under perturbations of (small) energy changes.

From the potential theoretic point of view quasiminimizers have several
drawbacks:

e 1o unique solution for the Dirichlet problem
e no comparison principle

e quasiminimizers do not form a sheaf

e no linearity

Instead of using quasiminimizers as tools, the objective of these lectures
is to show that quasiminimizers have a fascinating theory themselves. In



particular, they form a basis for nonlinear potential theoretic model with
interesting features. The following aspects of quasiminimizers are considered:

e Definitions

e Quasiminimizers in R

e Constructions for quasiminimizers
e (Capacity estimates

e Open problems

In the preliminary Section 2 some basic concepts of Sobolev spaces and
capacity are explained.

2 Preliminaries

We use the standard definition for the first order Sobolev space W1P(Q).
We recall some properties of this space. Let €2 be an open set in R"™ and
1 < p < co. A (real valued) function v belongs to W'P(Q) if and only if
v € LP(Q) and its distributional partial derivatives d;v, i = 1,...,n, belong
to LP(Q2). We let Vo = (01, ..., 0,v) denote the distributional gradient of v.
Being the distributional gradient of v means that

/vVgpdx:—/vaoda:
Q Q

holds for all ¢ € C}(2). The space W?(Q) is a Banach space under the
norm
o lwir@ =l o llp=l v llp + [ Vol I

Here || v |[,=| v ||»(q) refers to the standard LP-norm

([ 1op da)”

of a function v in Q. The space W,2P(Q) consists of all functions v such that
v|Q belongs to WP(€)') for all open ' CC €, i.e. ' is a compact subset of
Q). The space C*(€) as well the space of locally lipschitz functions are dense
in Wil (Q).

The first order Sobolev space space W1P(Q) is also a lattice, i.e. max(u,v)
and min(u,v) belong to W'?(Q) whenever u,v € WHP(Q).



The concept of capacity plays an important role in the theory of Sobolev
spaces and Potential Theory. If C is a compact subset of 2, then the pair
E = (C,9Q) is called a condenser. The p—capacity of E is defined as

cap,E = inf/Q |Vo|P dx (1)

where the infimum is taken over all functions ¢ € C2°(€2) such that ¢ =1 on
C. There is a standard way to extend the concept of the p—capacity first to
condensers (U, 2) where U is an open set in €2 and then to condensers (V, Q2)
where V' is an arbitrary subset of Q, see [HKM, Chapter 2|. A set V is of
p—capacity zero if cap,(V,2) = 0 for all open sets Q. Sets of p—capacity zero
have a similar role in the theory of Sobolev spaces as sets of measure zero in
the theory of LP—spaces. Note that for 1 < p <n aset V C R" of p—capacity
zero has Hausdorff dimension at most n — p. For p > n such a set is empty
and for p = n all Hausdorff o > 0 measures of V' are zero. The case n =1 is
somewhat exceptional: for p > 1 all sets of p—capacity zero are empty.

There is a closely related capacity Cap,(C), called the p-Sobolev capacity
defined as

Capy(C) =inf || v [[1pRrn

where the infimum is taken over all functions v € C*(R") such that v = 1 on
C. It has the advantage that there is no open set (except R™) which includes
C. As above this definition is extended to an arbitrary subset V of R". Sets
of p—capacity zero are the same under both definitions although the values
of capacities cap,(V, Q) and Cap,(V') are different in most cases.

The concept of the capacity makes it possible to give a more precise
interpretation for functions in W?(£2) than just equivalence classes in LP(£2):
a function v € W'?(Q) has a p-quasicontinuous version v,. This means
that v = v, a.e. in  and for each ¢ > 0 there is a closed set C' C 2
such v,|C is continuous and Cap,(Q2\ C) < e. A continuous function v €
WhP(Q) is clearly quasicontinuous. It can be shown that if u and v are p—
quasicontinuous and u = v a.e. in §2, then u = v except in a set of p—capacity
zero. This is abbreviated as u = v p-q.e. Hence functions in W?(Q2) are
essentially defined pointwise up to a set of p—capacity zero. See [HKM,
Chaper 4]. Also a function v € W,2?(Q) has a so called AC'LP-representative
(ACL = absolutely continuous on lines).

The space W, () consists of all functions v € WP(Q) such that v can be
approximated in the norm || v ||1,, by functions in the class C}(£2). The space
Wy (Q) is a closed subspace of W?(Q2). Every function v € W, ?(Q) can be
extended by 0 to R"™ \ © and the extended function belongs to WhP(R"™) =
WyP(R™). Conversely, a p-quasicontinuous function v € W?(R") belongs



to Wy*(Q) if (and only if) v = 0 p-q.e. in 9Q. Note that a continuous
function v € Wy (Q) need not have boundary values 0 on 9Q. Boundary
behavior of v depends on the capacitary properties of 0f2.

Capacity can be used to define the space Wol P(E) for an arbitrary sub-
set £ of R", namely Wol P(E) consists of all p—quasicontinuous functions in
WP(R™) such that u = 0 p—q.e. in R\ E. This definition is useful only if
E is measurable. It can be used, for example, if the set E is a level set of a
function in WP(R").

Sobolev spaces on the real line are rather simple. If (a,b), —oco < a <
b < oo is an open interval in R, then the space W'?((a,b)) consists of
LP(a,b)—functions v which are absolutely continuous in each closed interval
[c,d] C (a,b) with v' € LP(a,b). This requires v to be a quasicontinuous
version. If (a,b) is a finite interval, then the function v has a continuous
extension to the endpoints and v is absolutely continuous in [a, b]. A function
v € Wy?((a,b)), (a,b) afinite interval, can be characterized by the properties:
(i) v is absolutely continuous on [a,b], (ii) v(a) = 0 = v(b) and (iii) v" €
LP(a,b).

3 Definitions

Let 2 be an open subset of R®, n > 1, p > 1 and K > 1. A function u in
the local Sobolev space W,2P(Q) is called a (p, K)—quasiminimizer in § if for
all open sets Q' CC Q)

/ |Vul|P do < K/ |VoulP dx (2)
o o

for all functions v such that v—u € W, ?(Q'). In general we keep the number
p fixed and use the abbreviation K—quasiminimizer. For K = 1 the function
u is minimizer and hence a p~harmonic function. This means that a function
u € WP(Q) is a 1-quasiminimizer if and only if u is a weak solution of the
Euler equation

/Q VPV - Vods = 0 3)

of the variational integral
/ \Vul? dz.
Q

Here (3) is supposed to hold for all ¢ € CL(Q). If u € C*(2), then (3) can
be written in the form

V- (|VulP~2Va) = 0. (4)

However, solutions of (3) are, in general, in C'® only.
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More general sets than open sets can be used in (2). If £ is a measurable
set with compact closure in €2, then

/ Vul de < K/ Vol? da (5)
E E

for every v with v — u € Wy (E). See [KM].
Example 3.1 Every (weak) solution u of the equation
V- Az, Vu) =0
where the operator A satisfies
alh|lP < A(x,h)-h < BhP, 0 < a < f < oo,
is a K—quasiminimizer with K = (/a)?, see [HKM, p. 59].

Next we introduce an alternative definition for a quasiminimizer. In par-
ticular this is useful for quasiminimizers on the real line. The definition does
not involve the p—Dirichlet integral of the quasiminimizer u itself but only
that of minimizers, i.e. solutions of the p—harmonic equation with the same
boundary values as u.

Let u € WP(Q),p > 1. For each open set Q' CC Q we let ug denote
the minimizer of the p-Dirichlet integral in €' with boundary values u, i.e.
Uy —u € WyP() and ug is a solution of the p-harmonic equation (4) in
2. Direct methods in the calculus of variations are used to show that such
a unique minimizer always exists, see [HKM, Chapter 5]. Condition (2) can
now be rewritten as

/Q/ IVl dz < K/Q/ Vg [P dz. (6)

Theorem 3.2 Suppose that u belongs to VVﬁ)f(Q) Then u is a K-quasi-
minimizer in Q if and only if for each open set Q' CC Q and all disjoint
open sets Qq, ..., C Q' it holds

Z/Q Vg, P de < K/Q/ Vg |P dz. (7)

Proof. The necessity of condition (7) is immediate.

For the converse we have to show (6) in every open set ¥ CC Q. Fix
an open set 2 and note that (7) holds for a countable collection of open
subsets 1, €y, ... of Q" as well. Form a Whitney decomposition {Q;} of €'
where the open cubes @, are disjoint and UQ; = . For each j = 1,2, ...



subdivide every cube @, if necessary, to a finite number of disjoint cubes to
obtain a new sequence {Q?} of disjoint cubes so that every cube @ satisfies

diam(Q]) < 1/j.
Next define for each j the function v; as

vj(z) = qu(x),x ceQli=12 ..

k3

= u(z),z € Q\UQ.

Now it casily follows that v; —u € W, *(€') and by (7)
/Q/ Vo, dx < K/Q/ Vue [P de (8)

for each j. Since the sequence Vv, is bounded in LP(') and v;—u € Wy P (Q})
for each ¢ and j, the Sobolev inequality yields

/Qj lv; —ulP dx < C’diam(@{)p/ V(v; —u)Pdx

|

< C’j_p/Qj |V(v; —u)|P dx

where C' depends only on p and n. Summing over ¢ we obtain
/ |v; —ul|P dx < Z/] lv; — ulP dx < QPHC’j_p/ |Vul|P dx
& i Y@ 94

because

/ |V, |P dz §/ |VulP dz
Q/ Q/

by he minimizing property of the function v; in each QZ Thus v; — v in
LP(SY).

Since the sequence Vv; is bounded in LP(Y') and v; — u in LP(§)'), pass-
ing to a subsequence if necessary, we may assume that Vv; — Vu weakly in
LP(€Y). By the lower semicontinuity of the LP-norm in the weak convergence
we see that

/ IVl dz < liminf/ Vo, de < K/ Vg [P dz

o j—oo oy o

where (8) is used in the last step. This yields (6) and the proof is complete.
There is a version of Theorem 3.2 where the assumption u € W,2P(Q)

is not needed. To formulate the result we introduce some notation. Let
w be a continuous real valued function defined on the boundary 02 of a
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bounded open set © of R*. We let HS! denote the Perron-Wiener—Brelot
solution associated with the p~harmonic equation (4) and with the boundary
values w, see [HKM, Chapter 9]. Since 2 is bounded and w is continuous
a unique Perron—-Wiener—Brelot solution HS! with boundary values w exists,
see [HKM, Theorem 9.26].

If u is a quasiminimizer, then u is locally Holder continuous, see [CC] and
[KiM]. Hence the continuity assumption in Theorem 3.3 is not an essential
restriction.

Theorem 3.3 Suppose that u is continuous in 2. Then u is a K-quasi—
minimizer in Q if and only if for each open set Q' CC Q and all disjoint
open sets Qq, ..., C Q' it holds

Q;
Z/Q VHS

VNP dr < co. (9)

Proof. The proof is similar to that of Theorem 3.2. For the sufficiency
replace in the definition of the sequence v; the functions g by the functions

H]? 3. Note that a cube is regular domain for the p—Dirichlet problem and
hence the function v; is continuous in '. Now it is easy to see that the
sequence v;,j = 1,2, ..., converges locally uniformly to v in 2" and hence no
Poincaré inequality is needed.

Open problem 3.4 Isit possible to relax the continuity assumption in The-
orem 3.37

In the one dimensional case Theorem 3.2 takes a simple form.

Theorem 3.5 Suppose that p > 1, K > 1, A is an open interval in R and
u: A — R is a function. Then u is a K—quasiminimizer if and only if for
all intervals [a,b] C A it holds

|u(@ipr) — u(z;)|” lu(b) —
= (@i — )Pt <K (b— a1 (10)

whenever a = x1 < Ty < ... < Ty = b is a partition of [a,b].

Proof. Since affine functions are minimizers in the 1-dimensional case for

all p, see [GG], and



for an affine function f, (10) follows from Theorem 3.2 for a K—quasiminimizer
u.

To prove the sufficiency of (10) we first show that w is absolutely contin-
uous in any closed interval [a,b] C A. Let (a;,b;),i = 1,...,k be a collection
of disjoint intervals in [a, b]. By the Holder inequality and by (10) we obtain

(2 fu(b) —ular)])" < Z‘u az|p1 ZV’

|u(b ) |p
<K——"——— b; —
= G
and this clearly implies absolute Contlnulty of u on [a, b].

Condition (10) also implies that v € Lj .(A). Indeed, let [a,b] C A
and subdivide [a, b] into intervals of equal length < 1/i. Approximate u on
[a,b] by a piecewise linear function v; which equals u at the endpoints of
subintervals. Then v; converges uniformly to u in [a,b] and it follows from
(10), as in the proof of Theorem 3.2, that v} — v’ weakly in LP([a, b]), at least
for a subsequence. Hence v’ € LP([a,b]) and the inequality (2) follows from
the lower semicontinuity of the norm with respect to the weak convergence,
see the proof for Theorem 3.2. The proof follows.

Remark 3.6 The condition (10) should be compared to the condition

u(zin) = u(z:)|?

<M< 12
= (@i -zt T > (12)

for a function u : [a,b] — R. Here xy,x9,...xj41 is any partition of [a,b].
Now (12) is equivalent to the fact that u is absolutely continuous on [a, b]
and v’ € LP([a,b]), p > 1. The sufficiency of (12) follows as in the proof
for Theorem 3.5 and the necessity is due to the Holder inequality and the

estimate "
u(@s) = u(@)| < [ ] d.
Tit1

Inequality (10) has a reverse nature since it gives the bound for the sum
n (12) in terms of the values of u at the endpoints of each interval [a, b].
Note that (10) is much stronger than (12). In particular (10) implies that v’
is locally integrable to some exponent ¢ > p and that u is either constant or
strictly monotone.

A natural domain of definition for a quasiminimizer in R is a closed
interval [a,b]. Indeed, if u is a K—quasiminimizer in an open finite interval



(a,b), then u has a continuous extension to [a, b] and

|u(d) = u(c)]”

[ worar < K5 TS

(13)

holds for all intervals [c,d] C [a,b]. For this and other properties of one
dimensional quasiminimizers see [MS].

Open problem 3.7 It is easy to show that a non—constant (p, K')-quasiminimizer
u : R — R is quasisymmetric in the sense of Beurling and Ahlfors. Deter-
mine the quasisymmetry constant in terms of p and K. The case p = 2 is

the most interesting.

4 Constructions for quasiminimizers

Let v be a quasiminimizer. The following theorem gives a sufficient condition
for a function g so that the function u + g is again a quasiminimizer.

Theorem 4.1 Suppose that u is a K-quasiminimizer in 0 and g is a func-
tion in W,oP(Q) such that
Vgl < c|Vul (14)

a.e. in ) where ¢ € [0, K~'/?). Then the function u+ g is a K'— quasimini-

mizer with
(1+c)P

/_
K= (K*l/p —C)P‘

(15)

Proof. Fix an open set € CC Q and for each function v € W,5P(Q) let
h, denote the minimizer of the p—Dirichlet integral with boundary values vin
2, see the previous section. We need to show

/Q/ V(u+ )P de < K’ /Q Vs g P da. (16)

The Minkowski inequality, the minimizing property of h, and h,, the
quasiminimizing property of u and (14) yield

|| th+g ||LP(Q’):|| v(hqug - hg + hg) ||LP(Q/)
> V(husg — hg) llze@y = || Vhg ||l zory
>|| Vh oy = | Vg o> K77 | Vu ||y —¢ || V| o

= (K77 o) | Vu [[oe) -
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The Minkowski inequality, (14) and the above inequality imply

| V(u+9) e <l Vu lle@y + 1| Vg llze@n

1+c
| Vit s

< (A +0) | Vullerons o= —

This is the required inequality (16).

Remark 4.2 The upper bound for ¢ in Theorem 4.1 is essentially sharp
as can be easily seen from one—dimensional examples. More precisely, the
function u(t) = ¢ is a minimizer, i.e. 1-quasiminimizer, in R for all p > 1. If
we can now take

c=KP =1,

then the function ¢(t) = |¢| satisfies |¢'(t)| < c|u/(t)| for a.e. t. However, u+g
is not a K'— quasiminimizer for any K’ < oo because it is neither strictly
monotone nor constant, see [GGJ. Similar examples exist in all dimensions

Open problem 4.3 Radial quasiminimizers of power-type have been stud-
ied in the recent paper [BBM]. Very few additional constructions, besides
radial functions, solutions to V - A(x, Vu) = 0 and Theorem 4.1, are known
for quasiminimizers. It would be interesting to know other constructions.
Radial quasiminimizers correspond, in some sense, one dimensional quasi-
minimizers in higher dimensional Euclidean spaces. It would be interesting
to know if they have ”extremal” properties (like, for instance, radial quasi-
conformal mappings).

5 Capacity estimates

Let €2 be an open and bounded subset of R”, n > 1 and p > 1. If C'is a
compact subset of €, then the pair F = (C,Q) is called a condenser. The
p—capacity of E is defined as

cap, B = imf/Q |Vl? dx (17)

where the infimum is taken over all functions ¢ € C°(Q) such that ¢ = 1
on C, see Section 2. Let ¢ be as above. Now there is a unique function

w e WHP(Q) such that u — o € Wy*(Q\ C) and

cap, B = /Q |Vul|P dz.
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Moreover, the function u is p~harmonic in Q \ C, i.e. u is a solution of the
p—harmonic equation in 2\ C. Set u =1 on C. The function u is called the
p—potential of C' in €, see [HKM, Section 6.10].

Let u be the p—potential of C' in  and t € (0,1). Set C; = {x € Q :
u(z) > t}. Although C; need not be a compact set in {2 we can define the
p—capacity of the pair, also called a condenser, (Cy, ) as

cap,(Cy, ) = inf/Q |VolP dx (18)

where the infimum is now taken over all functions v such that v — u/t €
WyP(Q\ C;) and v = 1 on C. Here we use the refined version of the the
space Wy (2 \ Cy) consisting of all functions w € W (R™) such that w = 0
and w = 1 p—quasieverywhere in the complement of € and in C}, respectively.
For this theory see Section 2 and [HKM, Chapter 4].
The basic equation between the p—capacities of the condensers (Ci, <)
and F is
'L eap,(Cy, Q) = cap, E. (19)

Equation (19) becomes a double inequality

g

Ty eap, (Cy, Q) < cap,E < () capy (G, Q) (20)

g

if, instead of a p—potential, an A-potential u of C'in (2 is used. Here A refers
to the degenerate second order partial differential equation

(

V- A(z,Vu) =0 (21)
where the operator A satisfies
alhlP < A(x,h)-h < BlAIP, 0 < a < [ < o0, (22)

see [HKM, Lemma 6.19]. Equation (19) and inequality (20) are important
tools in the study of boundary behavior of p— and A-harmonic functions as
well as in the study of polar sets. We look for the corresponding estimates
for quasiminimizers.

Since quasimininimizers do not obey the comparison principle, which is
fundamental in Potential Theory, the capacity estimates of the type (20)
for quasiminimizers should be based on other methods than the proof for
(20). Here we develop a method which uses one dimensional quasiminimiz-
ers. For sharp estimates we need some special properties of one dimensional
quasiminimizers.

11



A natural domain of definition for a quasiminimizer in R is a closed
interval [a,b]. Indeed, if u is a K—quasiminimizer in an open interval (a,b),
then u has a continuous extension to [a, b] and

u(c)l?

/cd W/ (t)P dt < Km((dd)_—

_ C)p—l (23)
holds for all intervals [c,d] C [a,b]. For this and other properties of one
dimensional quasiminimizers see Section 3 and [MS].

We say that a K—quasiminimizer u : [0,1] — [0, 1] is a normalized K-
quasiminimizer if 4(0) = 0 and u(1) = 1. The following lemma is immediate.

Lemma 5.1 Suppose that u is a normalized (p, K )—quasiminimizer. Then
u(t) < KY/pe=1)/p
for each t € [0, 1].

Proof. By the Holder inequality

u(t) = /Ot u'(s)ds < t(pl)/p(/l u'(s)P ds)'/P

0

St(pq)/p[K( (( ) —u(0))P

]l/p KY/pee=1)/p
— )1

as required.

Next we review some results from [MS] which will be needed in the sequel.
We use the same notation as in [MS] where the higher regularity properties
of one dimensional quasiminimizers were considered in detail. From [MS,
Theorem 4] it follows that there is a function p; : (1,00) X [1,00) — (1, 9]
and for each triple (p, K,s) € (1,00) x [1,00) x (1,p1(p, K*/?)) a number
K; = Ki(p, K, s) such that if u is a normalized (p, K )—quasiminimizer, then
u is also a (s, K7)—quasiminimizer. The function p; satisfies for each p €
(1,00)and K > 1:

pp, K) > p (24)
lim pi(p, K) = oo =pi(p,1) (25)
Jim pi(p, K) = p (26)

and the number K has the property Ki(p,1,s) =1 for each p,s > 1.
From the above property we obtain an improved version of Lemma 5.1:

12



Corollary 5.2 Suppose that u is a normalized (p, K)—quasiminimizer. Then
for each s € (1,py(p, K'/P))

u(t) < Ki(p, K, s)/s= D/ (27)
for every t € [0, 1].

Remark 5.3 The only normalized 1-quasiminimizer is u(t) = ¢t. Note that
(27) reduces to u(t) <t for K = 1.

Suppose that u is a normalized (p, K)—quasiminimizer. Then w is strictly
increasing and continuous. By [MS, Theorem 14] there is a function po :
(1,00) x [1,00) — (1,00] and for each g € pa(p/(p — 1), K¥®~Y) a num-
ber Ky = Ks(p, K,q) such that the inverse function v of w is for each
q € (1,pa(p/(p — 1), KY®=1)) also a (g, K2)-quasiminimizer. The function
pe and the number Ky = Ky(p, K, q) satisfy

lim pa(p/(p = 1), K) = oo= pa(p/(p—1),1) (28)
dim psy(p/(p—1),K) = 1 (29)

Ky(p,1,q) = 1. (30)

Remark 5.4 For p = 2 the functions p;(2, K) and py(2, K) have explicit
expressions, see [MS],

M2, VK) =1+ /K/(K —1)
p2(2,K) =/ K/(K — 1)

for K > 1. The aforementioned functions p;, p» and the numbers K, K,
can be numerically computed for all argument values, see [D’AS] and [MS].
Moreover, all these results are sharp. Note the open ended property for the
exponents s and q.

We state the counterpart to (18) as two separate theorems although their
proofs follow from the same principle. We let the functions pi, ps and the
numbers K;, Ky be as above.

Suppose that £ = (C,Q) be a condenser in R",n > 1, where ) is a
bounded open set. Let u be a (p, K)— quasiminimizer in 2\ C' with boundary
values 0 on 99, 1 on C, i.e. u—¢ € Wy?(2\ C) where ¢ € C3°(Q) and
@ =1onC. Write C; = {z € Q: u(z) > t}.



Theorem 5.5 For each s € (1,p1(p/(p — 1), K'/?) there is a number k; =
k1(p, K, s) < oo such that

cap, B < foptP=s/ (571 cap,(Cy, ). (31)

The number k1 has the following property for eachp > 1 and s € (1,p1(p/(p—
1), KY/pp=1).
Il(iml ki(p, K,s) =1=ry(p,1,5s)

Remark 5.6 For K = 1inequality (31) and the properties of p; give cap,E <
P~ cap,(Cy, Q). Inequality (31) does not reduce to the right hand side of
(20) if the A—potential u of C'in 2 is considered as a quasiminimizer because
now an A-potential of C' in Q is a (§/a)P—quasiminimizer in Q \ C. Since
pi(p/(p—1), K'?) > p/(p — 1), the exponent s can be chosen > p/(p — 1).

Proof for Theorem 5.5. Set u =1 on C. Then u € WP(Q) and write
QG ={reQ:ulx)>t},0<t <.

Although €2; need not be an open subset of 2, for each 0 < t < t' < 1
we can define a condenser (Cy,€);) and its p—capacity cap,(Cy, €);) as before
using the refined Sobolev functions. Note that €2y = Q provided that C'is a
set of positive p—capacity and € is a domain. For each 0 <t < ¢’ <1 the
quasiminimizing property of u yields

capy(Cy, ) < (' — 1)~ /Q o, [Vl dr < Feap,(Cr90). (32)

Fix an interval [a,b] C [0,1] and let a =ty < ¢t < ... < tx = b be
a partition of [a,b]. Next we employ the well known separation inequality
for capacities of condensers, see [HKM, Theorem 2.6]: For the condensers

(Cy,_)), i = 1,2, ..., k, this gives

k
S~ eapy(Cy, Qi )P < capy(Cy,, Q)7 PY (33)

=1

because
Ctk - th—l - Ctk% C th—2 C ... C Qto-

Set
t :/ VulP dx.
Then ¢ : [0,1] — [0, 3],
B = |VulP de,
Q\C
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is a continuous strictly increasing function with ¢(0) = 0 and ¢(1) = 8. Now
(32) and (33) yield
k

E(ti — ti—1)p/(p_1)(<,0(ti) — cp(ti_l))l/(l_l?)
< Kl/(p_l)(b _ a)P/(p—l)(gp(b) _ ¢(a))1/(1_p)' (34)

Note that Vu = 0 almost everywhere on the set where u =const.
Let ¥ : [0, 5] — [0, 1] denote the inverse function of ¢. Writing (34) for
the inverse function v we obtain

k
D ((th) =t )P — )
i=1
< KM@ D (b)) — op(a’))P/ P — o)/ P (35)

where ¢(a) = d, p(b) =b" and p(t;) =t},i=0,1, ..., k. Thus (35) holds for

an arbitrary partition
d=ty<t)<..<tp,="V

of the interval [¢’,b'] C [0,3]. By Theorem 3.5 the function v is a (p/(p —
1), KY®=D)-quasiminimizer. Since ¢ — (5t) is a normalized quasimini-
mizer, Corollary 5.2 yields for each s € (1,p1(p/(p — 1), K*/P?~1))

W(BE) < ¢tV (36)
where ¢; = ¢;(p, K, s). For the inverse function ¢ of ¢ this means that
o(t) > By U/ e 0,1). (37)
By the quasiminimizing property of u

capy(Co, ) = K [ V)P de = K rp()
{u<t} t

and hence we obtain from (37)
capy(C, Q) < B < ¢/ /(1)
< Ko/t s/ eap (C, Q).
It is easy to check that the number
k1 = rk1(p, K, s) = Key/ 0™
has the required property. The proof follows.

The next theorem gives the counterpart of the left hand side of (20) for
quasiminimizers.

15



Theorem 5.7 For each q € (1,p2(p, K)) there is ko = ka(p, K, q) such that

r—(a=1)/q
—— cap,(C, ) < cap,E. (38)

R2

The number ks satisfies for each p > 1 and q € (1, p2(p, K)):
Il(i—>ml KZ(p7 K7 Q) =1= ’%Q(pv 17Q)

Proof. We proceed as in the proof of Theorem 5.5. Since the function ¢
is the inverse function of v and ¢ is a (p/(p — 1), K¥/®~1)—quasiminimizer,
for each ¢ € (1, p2(p, K)), see Section 3, there is a number Ky = Ky(p/(p —
1), KY®=1 4) such that the function ¢ is a (g, K5)-quasiminimizer in [0, 1].
Since ¢/ is a normalized quasiminimizer, Corollary 5.2 yields

o(t) < K"V ¢ € [0, 1]
and since
cap,(Cy, Q) < t7Pp(t)
we obtain from the quasiminimizing property of u that

r—(a=1)/q
- cap,(Cy, )

p
c,y>=>—-—
capp( ) )— K KK21/

v

r—(a=1)/q
= ——cap,(C, Q)

K2
where the number ko = KK 21/ ? has the required property. The proof follows.
Remark 5.8 Remark 5.6 also applies to Theorem 5.7: For K = 1 inequality
(38) reduces to cap,E > t*~'cap,(Cy, Q). However, the exponents and the
constants on the right and left hand side of (31) and (38) are different.

Open problem 5.9 Are the estimates (31) and (38) sharp for n > 17 As J.
Bjorn pointed out the Holder continuity result (27) in Corollary 5.2 need not
be sharp although the higher integrability exponent result for the derivative
of a one dimensional quasiminimizer is sharp.
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