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Review

Let © be the domain below S in the (X, Y)-plane where

S :={(u(s),v(s)) : s € R} is 2m-periodic,
(u,v) is injective and absolutely continuous,
u'(5)? +0'(s)? > 0 for almost all s,

s+ (u(s) — s,v(s)) is 2m—periodic

Q




Bernoulli Free Boundary Problem
Dirichlet problem

¥ € C(Q) N C*(Q),
AYy=0in Q, vy =0o0n S, ¥ is 2r—periodic in X,
Vi(X,Y) — (0,1) as Y — —oo uniformly in X

A Bernoulli free-boundary problem is one of determining S such
that also

M _
on

h(Y) < |Vy|? = A(Y) almost everywhere on S

where h = \? is given.

The Neumann derivative can be allowed to depend on the
curvature as well as the height of S

Special case: Stokes waves A(Y) =1 — 2gY
Stagnation point: A(w)(z) =0



Conjugation Operator or Hilbert Transform
Cu is defined on L3_ by

Csinkx = —coskx, Ccoskxr =sinkzx, keN, (Cl1=0

Note that w +— Cw’ is first order and self-adjoint, with Fourier
multipliers |k|, k € Z.

» C is a bounded linear operator on L) , 1 < p < 00
but not in L or LS.

> H]ﬁ’l be the real Hardy space of functions w € VV217’F1 with w’
in the usual Hardy space Hj :={u € L} : Cu€ L} }.

> Hﬁg’l is a Banach algebra and A(u) € H]ﬁ’l when u € H%’l, if
A is Lipschitz continuous.

Let D C C denote the open unit disc. For a holomorphic
function f: D — C, let f.(t) = f(re®) for t € R and r € (0,1).

im || frll 1 = sup,eqony [1frllpy is well defined
r—1 2m ’ 27

and u € H, if and only if u + iCu = U* for some U € Hé.



Bernoulli free boundaries yield a solution of

Aw){w™ + (1 +Cuw')’} = 1. (A)

which is closely related to

Mw) (14 Cuw') + C(A(w)w') =1, (B)

Equation (B) is the Euler-Lagrange equation of the functional

J(w) = i {A(w)(l —i—Cw') — w}dt, w € H]ﬁ’l,

—T




Riemann-Hilbert Theory - (B) = (A) if A(w) >0
Theorem

For w € 'H]}Q’l let W € HE be such that W* = w' +i(1 + Cw').
Then the following are equivalent.

(i) w satisfies (B) and A(w) > 0;
(i) w satisfies (A) and 1/W € N* .

Moreover

w' € L3 = AMw)|W*? = Mw){w*+(1+Cw')? € L}, = Mw) >0

(B) can be rewritten

2\ (w)Cw' =1 — Mw) +| AM(w)Cw" — C(A(w)w')
=1-\Nw)+|F(w)




The Commutator F
Let

Gu)(z,y) = Au(y)) — AMu(@)) — AMu())(u(y) — u(z))
(

Fu(x) = Mu(z))Cu'(x) — C(A(u)u')(x)

1 [T @) — A )
"2wm/1 an(@—y)2) Y
),

)
L[ @Gy
2 J_. tan((z —y)/2)

L _gen

in J_psi((@ —y)/2)"”
If A is convex, G > 0 and A = A/, then F(u)(z) > 0 a.e.
When A(w) = w (Stokes Waves,

o — L[ u@) —uly)
Flu)(z) = o /, ((sin(,l‘ - .z/)/2)> v




Smoothing of F

Suppose A is smooth. Then

> u € VV217}2 = F(u) € LSS and sequentially continuous from
the weak W122r-topology, into L5, 1 < p < oo, with the
strong L,-topology.

> Ifue W217’Tp for 2 < p < co. Then F(u) € o5

» ucCla, € (0,1) = Flu) e C, 0<6<a.

So if A # 0, a bootstrap gives u € C°°. Then an independent
argument gives that u is real-analytic because X is real-analytic.



Equation (B) and Bernoulli free boundaries
Theorem

We have observed that every Bernoulli free boundary gives a
solution w of
Aw){w” + (1 +Cu)?} =1 ((4))

In addition it follows that

w satisfies (B);
A(w) > 0; (©)
t— (—(t+Cw(t)),w(t)) injective on R.

Conversely, suppose that w € Hﬁg’l satisfies (C). Let
S={(—(t+Cw(t)),w(t)): teR}

and let Q be the open domain below S. There exists a
conformal mapping w of Q2 onto C~ such that S gives a solution
of a Bernoulli free boundary problem.



Jordan Curves

There is a one-to-one correspondence between solutions of
Bernoulli free boundary problems with |V| bounded and
solutions w € Hﬂlél of (C)

We would like to use the functional J and its Euler-Lagrange
equation (B), without further qualification to study Bernoulli
free-boundary problems. Suppose

A >0, logA is non-constant, concave, and
X' <0 where X # 0 on R(w)

Theorem

Suppose this holds and that w is a smooth solution of (B). Then
14+ Cw'(z) > 0 everywhere and the corresponding Stokes wave is
reqular and S is a Jordan curve.



Proof

Suppose W* = w' +i(1 + Cw') = |W*|e™" where w is a smooth
solution of (B). We know that log A\(w) € L and w is real
analytic. It follows from Riemann Hilbert theory that

¥ = Clog \/A(w). Then ¥ is real analytic.

Since log A is concave on R(w) we have proved that

N(w(?))
Aw(t))

cu'(t) — (Clog A(w)(t))' <0,

equivalently

N (w(t)) < cosy 1) g <0
A(w) B



Therefore )
¥ — iAl(w)\W*lg cos? >0

Let
™) = [max} 9

and, using translational invariance and periodicity, suppose that

min ¥ =9(z,), —7<a2" <z, <7

[_7(’7‘—}

Then cos¥(z*) > 0 and hence

9(@*) € ((4k — 1)m/2, (4k + 1)7/2) ke Z

The inequality gives that ¥(x) > (4k — 1)7/2 for all = € [z*, ],
for the same k.

Thus cos 1, and equivalently 1 + Cw’, is everywhere positive.



Result (so far) for less smooth w

Definition

to is called a stagnation point when A(w(tp)) = 0, and solutions
with stagnation points are called singular. The set N'(w) of
stagnation points is closed.

If

A >0, logA is non-constant, concave, and
N < 0 where A # 0 on R(w),

a solution of (B) defines a non-self-intersecting curve S and S
is a Bernoulli free boundary provided w has at most countably
many stagnation points.

Stagnation points of w correspond to stagnation points of the

free boundary problem w gives a solution of the free

boundary problem



Duality

Recall equation (B) in the form
Mw)w' +i(—=1+ C(AN(w)w")) = Mw) (w' —i(1+ Cu'))

which can be re-written

(' +i(1 +Cu')) = ﬁ (= Alwy! i1 +C(-Mw)u))
1

= o) (U' —i(1+ C(v'))

where v = —A(w). Suppose that A(w) > 0 so that (A) holds

also.
Let @(t) = — [5 A( )dm and A(w(t))X(@(t)) = 1
Then w(t) = — fo (z)dx is a solution of (A) and (B)

with A 1nstead of A



Dual Stokes Waves

The Stokes wave free boundary conditions are that the
harmonic stream function satisfy

Yp=0and [Vy|?+29y=1on S

The dual problem corresponds to to a free-boundary problem
for the “dual stream function” ¢:

v=0, (dgy+1)|Vy)i=1

at the “dual” free boundary S

These two apparently distinct Bernoulli problems are equivalent



Self-Duality

An example

It is natural to ask if there are As such that A = .

Consider the case A € C(R), A(v) >0, Vv € R.

Theorem

(i) Suppose f :[0,4+00) — [0,4+00) is continuously
differentiable, f(0) =0, f' >0, and f'(0) = 1. Let

_ fw), if w >0,
Alw) = { —fH(~w), ifw<O.

Then A = N is self-dual.
(ii) Conversely, if X is self-dual, then

has the form (1).



Regularity of Solutions of (B)

Without hypotheses on sign of A(w) we observe how A(w) # 0
relates to the regularity of solutions w of (B).
Theorem
When w € H]ﬁ’l is a solution of (B)
> log [\(w)] € Ly,
> A(w) > 0 on a set of positive measure

> w is real-analytic on the open set of full measure A\(w) # 0
As a corollary, if S, ¥ is a Bernoulli free boundary, then

> S and ¥ are real-analytic in a neighbourhood of any point
of § that is not a stagnation point,

> V) is continuous in the closure of €2



How zeros of )\ affects the smoothness of w

Let w € H%’l be a solution of (B). Suppose that ¢ > 0 is such
that for all z9 € R(w) with \(xzg) =0,

|A(z)] < constant |z — z¢|? for all z € R(w).

Let 5 5
o+ 0+

= and r(p) = ——.

(o) 0 (0) o+ 1

a) The following are equivalent:

i) wis real analytic on R;

(
(i) we W, Al (we VV27’r if A is Lipschitz);
(
(iii) A(w) > 0 on R.



(b) The function w is real-analytic if

Mw) >0 and — (14 Cw') +iw' = | — (1 +Cuw') + i/ e,
where ¥ = ¥; + 2 with 91 continuous and |92/ < 7/(2p(0)).
(|[92]loc < 7/6 if A is Lipschitz)
(¢) If w € Wo"? then A(w) > 0 (w € Wy*/? if X is Lipschitz)

(d) If o = 0, which amounts to no additional hypothesis since A
is continuous and R(w) is compact, then A(w) > 0 if w € W217’r2.
It is not known whether there are solutions of (B) which do not

satisfy (A) for which A(w) changes sign.

There are however solutions w of (A) and (B) for which \(w)
has zeros - the famous Stokes waves



Dimension of the Set of Stagnation Points

It follows from Theorem 6 that A (w) has measure 0. The
following result implies that its dimension is not greater than
2/3 if X is Lipschitz continuous. Note that the lower Minkowski
dimension dimj;, bounds the Hausdorff dimension from above.

Theorem

Let w € H]%{’l be a solution of (A) and (B) where X is such that
cle —xol|® < ANz) < Clx — x0l®, ¢, C, 0> 0,

for all x in a neighbourhood of xy in R(w) when A(xg) = 0. Let
q(0) = (0 +2)/2. Then

dimp N (w) < 1/q(0)-
If w e W217’Tp, p>1, then

dimp N(w) < 1—=(p/p(0)), 1<p<p(e), N(w) =0 when p > p(o).



Important Open Question

The hypotheses of this theorem on A are valid when
AMw) =1 — 29w for any g > 0.

Unfortunately even in that case it is not known whether the
requirement that A'(w) be denumerable is necessary.

In fact no examples are known in which N (w) N[0, 27) contains
more than one point when w € Hﬁg’l satisfies (A) and (B).

Can a solution w of (A) and (B) have
uncountably many stagnation points?



