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Review

Let Ω be the domain below S in the (X,Y )-plane where

S := {(u(s), v(s)) : s ∈ R} is 2π-periodic,

(u, v) is injective and absolutely continuous,

u′(s)2 + v′(s)2 > 0 for almost all s,

s 7→ (u(s) − s, v(s)) is 2π–periodic,

S

Ω



Bernoulli Free Boundary Problem
Dirichlet problem

ψ ∈ C(Ω) ∩C2(Ω),

∆ψ = 0 in Ω, ψ ≡ 0 on S, ψ is 2π–periodic in X,

∇ψ(X,Y ) → (0, 1) as Y → −∞ uniformly in X

A Bernoulli free-boundary problem is one of determining S such
that also

∂ψ

∂n
= h(Y ) ⇔ |∇ψ|2 = λ(Y ) almost everywhere on S

where h = λ2 is given.

The Neumann derivative can be allowed to depend on the
curvature as well as the height of S

Special case: Stokes waves λ(Y ) = 1 − 2gY

Stagnation point: λ(w)(x) = 0



Conjugation Operator or Hilbert Transform
Cu is defined on L2

2π by

C sin kx = − cos kx, C cos kx = sin kx, k ∈ N, C1 = 0

Note that w 7→ Cw′ is first order and self-adjoint, with Fourier
multipliers |k|, k ∈ Z.

I C is a bounded linear operator on Lp
2π, 1 < p <∞

but not in L1
2π or L∞

2π.
I H1,1

R
be the real Hardy space of functions w ∈W 1,1

2π with w′

in the usual Hardy space H1
R

:= {u ∈ L1
2π : Cu ∈ L1

2π}.

I H1,1
R

is a Banach algebra and λ(u) ∈ H1,1
R

when u ∈ H1,1
R

, if
λ is Lipschitz continuous.

Let D ⊂ C denote the open unit disc. For a holomorphic
function f : D → C, let fr(t) = f(reit) for t ∈ R and r ∈ (0, 1).

lim
r→1

‖fr‖L1

2π

= supr∈(0,1) ‖fr‖L1

2π

is well defined

and u ∈ H1
R

if and only if u+ iCu = U∗ for some U ∈ H1
C
.



Bernoulli free boundaries yield a solution of

λ(w){w′2 + (1 + Cw′)2} = 1. (A)

which is closely related to

λ(w)
(
1 + Cw′

)
+ C
(
λ(w)w′

)
= 1, (B)

Equation (B) is the Euler-Lagrange equation of the functional

J (w) =

∫ π

−π

{
Λ(w)

(
1 + Cw′

)
− w

}
dt, w ∈ H1,1

R
,



Riemann-Hilbert Theory - (B) ⇒ (A) if λ(w) ≥ 0
Theorem

For w ∈ H1,1
R

let W ∈ H1
C

be such that W ∗ = w′ + i(1 + Cw′).
Then the following are equivalent.

(i) w satisfies (B) and λ(w) ≥ 0;

(ii) w satisfies (A) and 1/W ∈ N+ .

Moreover

w′ ∈ L2
2π ⇒ λ(w)|W ∗|2 = λ(w){w′2+(1+Cw′)2 ∈ L1

2π ⇒ λ(w) ≥ 0

(B) can be rewritten

2λ(w)Cw′ = 1 − λ(w) + λ(w)Cw′ − C(λ(w)w′)

= 1 − λ(w) + F(w)



The Commutator F
Let

G(u)(x, y) = Λ(u(y)) − Λ(u(x)) − λ(u(x))(u(y) − u(x))

F(u(x) = λ(u(x))Cu′(x) − C(λ(u)u′)(x)

=
1

2π

∫ π

−π

(λ(u(x)) − λ(u(y)))u′(y)

tan((x− y)/2)
dy

=
−1

2π

∫ π

−π

(∂/∂y)G(u)(x, y)

tan((x− y)/2)
dy

=
1

4π

∫ π

−π

G(u)(x, y)

sin2((x− y)/2)
dy

If Λ is convex, G ≥ 0 and λ = Λ′, then F(u)(x) ≥ 0 a.e.

When λ(w) = w (Stokes Waves,

F(u)(x) =
1

8π

∫ π

−π

(
u(x) − u(y)

(sin(x− y)/2)

)2

dy



Smoothing of F

Suppose λ is smooth. Then

I u ∈W 1,2
2π ⇒ F(u) ∈ L∞

2π and sequentially continuous from
the weak W 1,22π-topology, into Lp

2π, 1 ≤ p <∞, with the
strong Lp-topology.

I If u ∈W 1,p
2π for 2 < p <∞. Then F(u) ∈ C1− 2

p .

I u ∈ C1, α, α ∈ (0, 1) ⇒ F(u) ∈ C1,δ, 0 < δ < α.

So if λ 6= 0, a bootstrap gives u ∈ C∞. Then an independent
argument gives that u is real-analytic because λ is real-analytic.



Equation (B) and Bernoulli free boundaries

Theorem

We have observed that every Bernoulli free boundary gives a
solution w of

λ(w){w′2 + (1 + Cw′)2} = 1 ((A))

In addition it follows that

w satisfies (B);
λ(w) ≥ 0;

t 7→ (−(t+ Cw(t)), w(t)) injective on R.



 (C)

Conversely, suppose that w ∈ H1,1
R

satisfies (C). Let

S = {(−(t+ Cw(t)), w(t)) : t ∈ R}

and let Ω be the open domain below S. There exists a
conformal mapping ω of Ω onto C

− such that S gives a solution
of a Bernoulli free boundary problem.



Jordan Curves

There is a one-to-one correspondence between solutions of
Bernoulli free boundary problems with |∇ψ| bounded and
solutions w ∈ H1,1

R
of (C)

We would like to use the functional J and its Euler-Lagrange
equation (B), without further qualification to study Bernoulli
free-boundary problems. Suppose

λ ≥ 0, log λ is non-constant, concave, and

λ′ ≤ 0 where λ 6= 0 on R(w)

Theorem

Suppose this holds and that w is a smooth solution of (B). Then
1 + Cw′(x) > 0 everywhere and the corresponding Stokes wave is
regular and S is a Jordan curve.



Proof

Suppose W ∗ = w′ + i(1 + Cw′) = |W ∗|e−iϑ where w is a smooth
solution of (B). We know that log λ(w) ∈ L1

2π and w is real
analytic. It follows from Riemann Hilbert theory that
ϑ = C log

√
λ(w). Then ϑ is real analytic.

Since log λ is concave on R(w) we have proved that

λ′(w(t))

λ(w(t))
Cw′(t) −

(
C log λ(w)(t)

)
′

≤ 0,

equivalently

λ′(w(t))

λ(w(t))

(
cos ϑ√
λ(w)

− 1

)
− 2ϑ′ ≤ 0



Therefore

ϑ′ −
1

2
λ′(w)|W ∗|3 cos ϑ > 0

Let
ϑ(x∗) = max

[−π,π]
ϑ

and, using translational invariance and periodicity, suppose that

min
[−π,π]

ϑ = ϑ(x∗), −π < x∗ < x∗ < π

Then cosϑ(x∗) > 0 and hence

ϑ(x∗) ∈ ((4k − 1)π/2, (4k + 1)π/2) k ∈ Z

The inequality gives that ϑ(x) > (4k − 1)π/2 for all x ∈ [x∗, x∗],
for the same k.

Thus cosϑ, and equivalently 1 + Cw′, is everywhere positive.



Result (so far) for less smooth w

Definition

t0 is called a stagnation point when λ(w(t0)) = 0, and solutions
with stagnation points are called singular. The set N (w) of
stagnation points is closed.

If

λ ≥ 0, log λ is non-constant, concave, and

λ′ ≤ 0 where λ 6= 0 on R(w),

a solution of (B) defines a non-self-intersecting curve S and S
is a Bernoulli free boundary provided w has at most countably
many stagnation points.

Stagnation points of w correspond to stagnation points of the
free boundary problem only if w gives a solution of the free
boundary problem



Duality

Recall equation (B) in the form

λ(w)w′ + i(−1 + C(λ(w)w′)) = λ(w)
(
w′ − i(1 + Cw′)

)

which can be re-written

−(w′ + i(1 + Cw′)) =
1

λ(w)

(
− λ(w)w′ − i(1 + C(−λ(w)w′)

)

=
1

λ(w)

(
v′ − i(1 + C(v′)

)

where v = −λ(w). Suppose that λ(w) ≥ 0 so that (A) holds
also.

Let w̃(t) = −
∫ t
0 λ(w(x))w′(x)dx and λ(w(t))λ̃(w̃(t)) ≡ 1

Then w̃(t) = −
∫ t
0 λ(w(x))w′(x)dx is a solution of (A) and (B)

with λ̃ instead of λ



Dual Stokes Waves

The Stokes wave free boundary conditions are that the
harmonic stream function satisfy

ψ ≡ 0 and |∇ψ|2 + 2gy ≡ 1 on S

The dual problem corresponds to to a free-boundary problem
for the “dual stream function” ψ̃:

ψ̃ ≡ 0, (4gy + 1)|∇ψ̃|4 ≡ 1

at the “dual” free boundary S̃

These two apparently distinct Bernoulli problems are equivalent



Self-Duality
An example

It is natural to ask if there are λ s such that λ̃ ≡ λ.
Consider the case λ ∈ C(R), λ(v) > 0, ∀v ∈ R.

Theorem

(i) Suppose f : [0,+∞) → [0,+∞) is continuously
differentiable, f(0) = 0, f ′ > 0, and f ′(0) = 1. Let

Λ(w) =

{
f(w), if w ≥ 0,

−f−1(−w), if w < 0.
(1)

Then λ = Λ′ is self-dual.

(ii) Conversely, if λ is self-dual, then

Λ(w) :=

∫ w

0
λ(v)dv, w ∈ R

has the form (1).



Regularity of Solutions of (B)

Without hypotheses on sign of λ(w) we observe how λ(w) 6= 0
relates to the regularity of solutions w of (B).

Theorem

When w ∈ H1,1
R

is a solution of (B)

I log |λ(w)| ∈ L1
2π

I λ(w) > 0 on a set of positive measure

I w is real-analytic on the open set of full measure λ(w) 6= 0

As a corollary, if S, ψ is a Bernoulli free boundary, then

I S and ψ are real-analytic in a neighbourhood of any point
of S that is not a stagnation point,

I ∇ψ is continuous in the closure of Ω



How zeros of λ affects the smoothness of w

Let w ∈ H1,1
R

be a solution of (B). Suppose that % > 0 is such
that for all x0 ∈ R(w) with λ(x0) = 0,

|λ(x)| ≤ constant |x− x0|
% for all x ∈ R(w).

Let

p(%) =
%+ 2

%
and r(%) =

%+ 2

%+ 1
.

(a) The following are equivalent:

(i) w ∈W
1,p(%)
2π (w ∈W 1,3

2π if λ is Lipschitz);
(ii) w is real-analytic on R;
(iii) λ(w) > 0 on R.



(b) The function w is real-analytic if

λ(w) ≥ 0 and − (1 + Cw′) + iw′ =
∣∣− (1 + Cw′) + iw′

∣∣ eiϑ,
where ϑ = ϑ1 + ϑ2 with ϑ1 continuous and ‖ϑ2‖∞ < π/(2p(%)).

(‖ϑ2‖∞ < π/6 if λ is Lipschitz)

(c) If w ∈W
1,r(%)
2π then λ(w) ≥ 0 (w ∈W

1,3/2
2π if λ is Lipschitz)

(d) If % = 0, which amounts to no additional hypothesis since λ
is continuous and R(w) is compact, then λ(w) ≥ 0 if w ∈W 1,2

2π .

It is not known whether there are solutions of (B) which do not
satisfy (A) for which λ(w) changes sign.

There are however solutions w of (A) and (B) for which λ(w)
has zeros - the famous Stokes waves



Dimension of the Set of Stagnation Points
It follows from Theorem 6 that N (w) has measure 0. The
following result implies that its dimension is not greater than
2/3 if λ is Lipschitz continuous. Note that the lower Minkowski
dimension dimM , bounds the Hausdorff dimension from above.

Theorem

Let w ∈ H1,1
R

be a solution of (A) and (B) where λ is such that

c|x− x0|
% ≤ λ(x) ≤ C|x− x0|

%, c, C, % > 0,

for all x in a neighbourhood of x0 in R(w) when λ(x0) = 0. Let
q(%) = (%+ 2)/2. Then

dimM N (w) ≤ 1/q(%).

If w ∈W 1,p
2π , p > 1, then

dimM N (w) ≤ 1−(p/p(%)), 1 < p < p(%), N (w) = ∅ when p ≥ p(%).



Important Open Question

The hypotheses of this theorem on λ are valid when
λ(w) = 1 − 2gw for any g > 0.

Unfortunately even in that case it is not known whether the
requirement that N (w) be denumerable is necessary.

In fact no examples are known in which N (w) ∩ [0, 2π) contains
more than one point when w ∈ H1,1

R
satisfies (A) and (B).

Can a solution w of (A) and (B) have
uncountably many stagnation points?


