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Variational Setting
Cu is defined on L2

2π by

C sin kx = − cos kx, C cos kx = sin kx, k ∈ N, C1 = 0

Note that w 7→ Cw′ is first order and self-adjoint, with Fourier
multipliers |k|, k ∈ Z.

I H1,1
R

be the real Hardy space of functions w ∈ W 1,1
2π with w′

in the usual Hardy space H1
R

:= {u ∈ L1
2π : Cu ∈ L1

2π}.

I H1,1
R

is a Banach algebra and λ(u) ∈ H1,1
R

when u ∈ H1,1
R

, if
λ is Lipschitz continuous.

λ(w)
(
1 + Cw′

)
+ C

(
λ(w)w′

)
= 1, (B)

is the Euler-Lagrange equation of the functional

J (w) =

∫ π

−π

{
Λ(w)

(
1 + Cw′

)
− w

}
dt, w ∈ H1,1

R
,



Basic Requirements of a Useful Theory

Recall from Lecture 2 that if solutions of (B) are to give
Bernoulli free boundaries then we need to know that λ(w) ≥ 0
and that

{(−t − Cw(t), w(t)) : t ∈ R}

defines a 2π-periodic Jordan curve.

For λ Lipschitz, λ(w) ≥ 0 if w ∈ W
1,3/2

2π and if

λ ≥ 0, log λ is non-constant, concave, and

λ′ ≤ 0 where λ 6= 0 on R(w),
(†)

a solution of (B) defines a non-self-intersecting curve S

Therefore, for λ Lipschitz, we should (until we know more)

assume that λ satisfies (†) and we need solutions in W
1,3/2

2π



Morse Indices
Despite the simple and attractive form of J , the global
variational theory remains largely unexplored – see later

First we develop a Morse index theory in the Hilbert space
W 1,2

2π for non-singular (no stagnation points) critical points –
such solutions are regular and satisfy both (A) and (B)

The Morse index of a critical point w of J is the number of
negative eigenvalues of D2J (w):

D2J (w)u = λ′(w)(1 + Cw′)u + λ(w)Cu′ + C
(
λ′(w)w′u + λ(w)u′

)

Clearly D2J (w) : W 1,2
2π → L2

2π and, for u ∈ W 1,2
2π ,

Qw(u) = 〈D2J (w)u, u〉L2

2π
=

∫ π

−π

{
λ′(w)(1+Cw′)u2 + 2λ(w)uCu′

}
dt

defines a quadratic form on W 1,2
2π . The Morse index of w is

M(w) = sup
{

dimE : Qw(u) < 0, u ∈ E \ {0}
}

where E denotes a linear subspace of W 1,2
2π .



Plotnikov’s Transformation

Plotnikov showed that the Morse index is given by the much
more convenient formula

M(w) = sup
{

dimE : Qw(u) < 0, u ∈ E \ {0}
}
,

where E denotes a linear subspace of W 1,2
2π ,

Qw(u) :=

∫ π

−π
{uCu′ + qu2}dt

and, with ϑ = C
(
log

√
λ(w)

)
, the potential

q = −ϑ′ +
λ′(w)

2λ(w)
(1 + Cw′) = −ϑ′ +

1

2
λ′(w)λ(w)−3/2 cos ϑ.

Like Magic: the convolution formula leads to the conclusion
that Plotnikov’s potential q is negative



Theorem

Suppose that w is a non-singular solution of and let w̃ denote

the solution of the dual problem. Then the Morse indices of w
and w̃ are equal.

When λ is globally real-analytic, the operator D2J (w) is
well-defined at any W 1,2

2π -solution w irrespective of the
smoothness of w. But the Morse index may be infinite if w has
stagnation points.

The next result says that if the Morse indices of a set of
non-singular solutions are bounded, then none of them is close
to being singular. This is true is for families of systems with
possibly different nonlinearities λk(w).

Theorem

Suppose that a sequence {wk} of non-singular solutions of

systems with λ = λk in a certain admissible class and that

{M(wk)} is bounded. Then, for some α > 0,
λk(wk(t)) ≥ α, k ∈ N.



To Focus on Difficulties – Consider Stokes Waves
There is no essential difference in the more general setting

Then λ(w) = 1 − 2λw, satisfies (†) and equation (B) has the
form

Cw′ = λ(w + Cw′ + wCw′ + C(ww′)), w ∈ H1,1
R

(S)

or, in terms of the commutator F ,

(1 − 2λw)Cw′ = λ(w −F(w))

where
F(w)(x) = (wCw′ − C(ww′))(x)

=
1

8π

∫ π

−π

(
u(x) − u(y)

sin(x − y)/2)

)2

dy ≥ 0



The Corresponding Functional
λ(w) = 1 − 2λw and Λ(w) = w − λw

2

For w ∈ H1,1
R

,

J (w) =

∫ π

−π

{
Λ(w)

(
1 + Cw′

)
− w

}
dt

=

∫ π

−π
wCw′ dt − λ

∫ π

−π
w2 dt − λ

∫ π

−π
w2Cw′ dt

Note that if w =
∑
k∈Z

wke
ikt

1

2π

∫ π

−π
wCw′ dt =

∑

k∈Z

|k||wk|
2 =

(
‖w‖2

H
1/2

2π

− ‖w‖2

L2

2π

)
,

But H
1/2

2π 6⊂ L∞
2π and w2Cw′ /∈ L1

2π for w ∈ H
1/2

2π .

If we work in H
1/2+ε
2π the functional does not give bounds

needed for the Palais-Smale condition



Coping by Penalization–Regularization
The penalization and regularization strategy which Mark
Groves used to great effect for 3D solitary waves can be
implemented here also.

But the results are disappointing:

for λ ∈ (0.99, 1) there exists a non-zero solution of (S)

The the use of regularization and penalization, and the need to
prove that the solution so found is non-trivial, curtails the
effectiveness of this potentially global variational method to
yield solutions close to bifurcation points.

Ignoring the variational setting, consider equation (B) as an
operator equation G(λ,w) = 0 with

G(λ,w) = (1 − 2λw)Cw′ − λ(w −F(w))

where

F(w)(x) = (wCw′−C(ww′))(x) =
1

8π

∫ π

−π

(
u(x) − u(y)

sin(x − y)/2)

)2

dy ≥ 0



Local Bifurcation Theory
a la Implicit Function Theorem

w = 0 is a solution (the trivial solution) for all λ.

Linearized about zero, the problem is Cw′ = λw and the
solutions are λ = k, k ∈ N ∪ 0, and w ∈ span{sin kt, cos kt}

For simplicity, we seek only symmetric waves (i.e. even w)

Standard bifurcation theory at λ = 1 leads to the existence
locally of a real-analytic curve of even solutions

B = {(λε, wε), |ε| ≤ ε0} ⊂ R × CN
2π, for any N

with λ0 = 1, w0 = 0 and

w−ε(t) = wε(t + π) and λ−ε = λε < 1 if ε 6= 0



Global Bifurcation Theory
a la Leray-Schauder Degree or Real-Analytic Variety Theory

Moreover, using degree theory, it can be shown that there is a
continuum B of such solutions in R × CN

2π with the following
properties:

I B ⊂ B;

I 0 < a ≤ λ ≤ b < ∞ for all (λ,w) ∈ B;

I w is even and monotone on [0, π] if (λ,w) ∈ B

I There is a sequence (λk, wk) ∈ B such that
1 − 2λkwk(0) → 0

Indeed, because our equation involves only real-analytic nonlinear

operators, B has a unique global extension as a one-dimensional curve

with a real-analytic parametrization at each point, self-intersections

and encounters with other manifolds of solutions notwithstanding

Consequently M(wk) → ∞ as k → ∞ and there are solutions of
arbitrarily large Morse index on the continuum



Bifurcations and Secondary Bifurcations on B

To finish, we give a brief sketch of how real-analytic bifurcation
theory interacts with the variational structure to conclude the
existence of multiple secondary bifurcation points on the global
branch B.

The abstract theory upon which these conclusions are based
considerations of real-analyticity

and it t is worth emphasizing that the existence of a path, not
just a connected set, of solutions is essential. This is where the
real-analyticity comes in



Definition

(λ0, y0) is a bifurcation point for an equation G(λ, y) = 0 if
there are two sequences {(λk, ŷk)}, {(λk, ỹk)} of solutions of
G(λ, y) = 0 with ỹk 6= ỹk for all k (same λk for both) converging
to (λ0, y0) in R × Y .

Suppose that Y is dense in a Hilbert space (X, 〈·, ·〉) and that
G(λ, ·) is the gradient of a C2-functional g(λ, ·) with G(λ, y) = 0
and the linearization ∂yG[(λ, y)] − µι : Y → X a
homeomorphism except for µ in a discrete set S(λ, y). For
µ ∈ S(λ, y) suppose that

(
µι − ∂yG[(λ, y)]

)
is a Fredholm

operator of index zero.

this is guaranteed for B by the real analytic bifurcation theory



Lemma

Suppose that U ⊂ (0,∞) × Y is an open set, G : U → X is C2

and such that M(λ, y) is well-defined for every (λ, y) ∈ U with

G(λ, y) = 0. Suppose also that for compact sets of solutions in

U , the sets S(λ, y) are uniformly bounded below. Let

S := {(λ(s), y(s)) : s ∈ (−ε, ε)} ⊂ U be a continuous curve of

solutions to G(λ, y) = 0 such that 0 /∈ S(λ(s), y(s)) for all

s ∈ (−ε, ε) \ {0} and that

lim
s↗0

M(λ(s), y(s)) 6= lim
s↘0

M(λ(s), y(s))

Then (λ(0), y(0)) is a bifurcation point.

In the topological version of global bifurcation theory it is difficult,

and in general not always possible, to be sure of the existence of such

a path upon which secondary bifurcation points can be identified.



The following result is now immediate from the existence of a
path of solutions given by the analytic global bifurcation theory

Lemma

There is an infinite discrete set Σ of values of points on B
which are a bifurcation points for the Stokes wave equation.

It is not known whether they are turning points or secondary
bifurcation points – the numerical evidence points to the
turning points but this is completely open mathematically

Strong numerical evidence suggests that in the physical domain
the curve B gives a maximal connected set of Stokes waves of
the fundamental period 2π, and that no Stokes waves of period
2π bifurcate from it and that it does it self-intersect.



Scaling

It is easy to see that if (λ,w) is a solution of the Stokes wave
equation (B), then so is (kλ, k−1w(kt)).

So B has a scaled copy Bk that bifurcates from (k, 0).

Each of these branches has solutions of minimal period 2π/k
and they can be scaled back to B

A question asked by Levi-Civita is this: can every solution
bifurcating from (k, 0) be scaled back to a point on the branch
bifurcating fom (1,0)?



The answer, from this variational theory, is NO!

Because the Morse index tends to infinity along B, there exist
secondary bifurcation points on Bk that are not copies of
behaviour on B

Hence the formation of singular waves with stagnation points is

the cause, mathematically, of secondary sub-harmonic
bifurcations on Bk

When interpreted in the physical domain, they correspond to
period-multiplying bifurcations of Stokes waves. The physical
waves which bifurcate have minimal period 2kπ and there are
infinitely many period-multiplying bifurcation points for Stokes
waves in the physical domain

NEVERTHELESS THERE IS ESSENTIALLY NO
VARIATIONAL THEORY OF THE OCCURRENCE OF

THESE PHENOMENA
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