Bernoulli Free-boundary Problems Lecture 3

John Toland

Linköping Lectures 10 – 14 August 2009

Variational Setting

 $\mathcal{C}u$ is defined on $L^2_{2\pi}$ by

 $\mathcal{C}\sin kx = -\cos kx, \ \mathcal{C}\cos kx = \sin kx, \ k \in \mathbb{N}, \ \mathcal{C}1 = 0$

Note that $w \mapsto \mathcal{C}w'$ is first order and self-adjoint, with Fourier multipliers $|k|, k \in \mathbb{Z}$.

H^{1,1}_ℝ be the real Hardy space of functions w ∈ W^{1,1}_{2π} with w' in the usual Hardy space H¹_ℝ := {u ∈ L¹_{2π} : Cu ∈ L¹_{2π}}.
H^{1,1}_ℝ is a Banach algebra and λ(u) ∈ H^{1,1}_ℝ when u ∈ H^{1,1}_ℝ, if λ is Lipschitz continuous.

$$\lambda(w)(1 + \mathcal{C}w') + \mathcal{C}(\lambda(w)w') = 1, \qquad (\mathbf{B})$$

is the Euler-Lagrange equation of the functional

$$\mathcal{J}(w) = \int_{-\pi}^{\pi} \left\{ \Lambda(w) \left(1 + \mathcal{C}w' \right) - w \right\} dt, \quad w \in \mathcal{H}_{\mathbb{R}}^{1,1},$$

Basic Requirements of a Useful Theory

Recall from Lecture 2 that if solutions of (B) are to give Bernoulli free boundaries then we need to know that $\lambda(w) \ge 0$ and that

$$\{(-t - \mathcal{C}w(t), w(t)) : t \in \mathbb{R}\}\$$

defines a 2π -periodic Jordan curve.

For λ Lipschitz, $\lambda(w) \ge 0$ if $w \in W_{2\pi}^{1,3/2}$ and if

 $\lambda \ge 0$, $\log \lambda$ is non-constant, concave, and $\lambda' \le 0$ where $\lambda \ne 0$ on $\mathcal{R}(w)$,

 (\dagger)

a solution of (**B**) defines a *non-self-intersecting* curve STherefore, for λ Lipschitz, we should (until we know more) assume that λ satisfies (†) and we need solutions in $W_{2\pi}^{1,3/2}$

Morse Indices

Despite the simple and attractive form of \mathcal{J} , the global variational theory remains largely unexplored – see later

First we develop a Morse index theory in the Hilbert space $W_{2\pi}^{1,2}$ for non-singular (no stagnation points) critical points – such solutions are regular and satisfy both (A) and (B)

The Morse index of a critical point w of \mathcal{J} is the number of negative eigenvalues of $D^2 \mathcal{J}(w)$:

 $D^{2}\mathcal{J}(w) u = \lambda'(w)(1 + \mathcal{C}w')u + \lambda(w)\mathcal{C}u' + \mathcal{C}\left(\lambda'(w)w'u + \lambda(w)u'\right)$ Clearly $D^{2}\mathcal{J}(w) : W_{2\pi}^{1,2} \to L_{2\pi}^{2}$ and, for $u \in W_{2\pi}^{1,2}$, $Q_{w}(u) = \langle D^{2}\mathcal{J}(w)u, u \rangle_{L_{2\pi}^{2}} = \int_{-\pi}^{\pi} \left\{\lambda'(w)(1 + \mathcal{C}w')u^{2} + 2\lambda(w)u\mathcal{C}u'\right\}dt$

defines a quadratic form on $W_{2\pi}^{1,2}$. The Morse index of w is

$$\mathcal{M}(w) = \sup \left\{ \dim E : Q_w(u) < 0, \ u \in E \setminus \{0\} \right\}$$

where E denotes a linear subspace of $W_{2\pi}^{1,2}$.

Plotnikov's Transformation

Plotnikov showed that the Morse index is given by the much more convenient formula

$$\mathcal{M}(w) = \sup \left\{ \dim E : \mathcal{Q}_w(u) < 0, \ u \in E \setminus \{0\} \right\},\$$

where E denotes a linear subspace of $W_{2\pi}^{1,2}$,

$$\mathcal{Q}_w(u) := \int_{-\pi}^{\pi} \{ u\mathcal{C}u' + qu^2 \} dt$$

and, with $\vartheta = \mathcal{C}(\log \sqrt{\lambda(w)})$, the potential

$$q = -\vartheta' + \frac{\lambda'(w)}{2\lambda(w)}(1 + \mathcal{C}w') = -\vartheta' + \frac{1}{2}\lambda'(w)\lambda(w)^{-3/2}\cos\vartheta.$$

Like Magic: the convolution formula leads to the conclusion that Plotnikov's potential q is negative

Theorem

Suppose that w is a non-singular solution of and let \tilde{w} denote the solution of the dual problem. Then the Morse indices of w and \tilde{w} are equal.

When λ is globally real-analytic, the operator $D^2 \mathcal{J}(w)$ is well-defined at any $W_{2\pi}^{1,2}$ -solution w irrespective of the smoothness of w. But the Morse index may be infinite if w has stagnation points.

The next result says that if the Morse indices of a set of non-singular solutions are bounded, then none of them is close to being singular. This is true is for families of systems with possibly different nonlinearities $\lambda_k(w)$.

Theorem

Suppose that a sequence $\{w_k\}$ of non-singular solutions of systems with $\lambda = \lambda_k$ in a certain admissible class and that $\{\mathcal{M}(w_k)\}$ is bounded. Then, for some $\alpha > 0$, $\lambda_k(w_k(t)) \ge \alpha$, $k \in \mathbb{N}$.

To Focus on Difficulties – Consider Stokes Waves There is no essential difference in the more general setting

Then $\lambda(w) = 1 - 2\lambda w$, satisfies (†) and equation (B) has the form

$$\mathcal{C}w' = \lambda(w + \mathcal{C}w' + w\mathcal{C}w' + \mathcal{C}(ww')), \quad w \in \mathcal{H}^{1,1}_{\mathbb{R}}$$
(S)

or, in terms of the commutator \mathcal{F} ,

$$(1-2\lambda w)\mathcal{C}w' = \lambda(w-\mathcal{F}(w))$$

where

$$\mathcal{F}(w)(x) = (w\mathcal{C}w' - \mathcal{C}(ww'))(x)$$
$$= \frac{1}{8\pi} \int_{-\pi}^{\pi} \left(\frac{u(x) - u(y)}{\sin(x - y)/2}\right)^2 dy \ge 0$$

The Corresponding Functional $\lambda(w) = 1 - 2\lambda w$ and $\Lambda(w) = w - \lambda w^2$

For
$$w \in \mathcal{H}^{1,1}_{\mathbb{R}}$$
,

$$\mathcal{J}(w) = \int_{-\pi}^{\pi} \left\{ \Lambda(w) \left(1 + \mathcal{C}w' \right) - w \right\} dt$$
$$= \int_{-\pi}^{\pi} w \mathcal{C}w' \, dt - \lambda \int_{-\pi}^{\pi} w^2 \, dt - \lambda \int_{-\pi}^{\pi} w^2 \mathcal{C}w' \, dt$$

Note that if $w = \sum_{k \in \mathbb{Z}} w_k e^{ikt}$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} w \mathcal{C}w' \, dt = \sum_{k \in \mathbb{Z}} |k| |w_k|^2 = \left(\|w\|_{H^{1/2}_{2\pi}}^2 - \|w\|_{L^2_{2\pi}}^2 \right),$$

But $H_{2\pi}^{1/2} \not\subset L_{2\pi}^{\infty}$ and $w^2 \mathcal{C} w' \notin L_{2\pi}^1$ for $w \in H_{2\pi}^{1/2}$. If we work in $H_{2\pi}^{1/2+\varepsilon}$ the functional does not give bounds needed for the Palais-Smale condition

Coping by Penalization–Regularization

The penalization and regularization strategy which Mark Groves used to great effect for 3D solitary waves can be implemented here also.

But the results are disappointing:

for $\lambda \in (0.99, 1)$ there exists a non-zero solution of (S)

The the use of regularization and penalization, and the need to prove that the solution so found is non-trivial, curtails the effectiveness of this potentially global variational method to yield solutions close to bifurcation points.

Ignoring the variational setting, consider equation (B) as an operator equation $G(\lambda, w) = 0$ with

$$G(\lambda, w) = (1 - 2\lambda w)\mathcal{C}w' - \lambda(w - \mathcal{F}(w))$$

where

$$\mathcal{F}(w)(x) = (w\mathcal{C}w' - \mathcal{C}(ww'))(x) = \frac{1}{8\pi} \int_{-\pi}^{\pi} \left(\frac{u(x) - u(y)}{\sin(x - y)/2}\right)^2 dy \ge 0$$

Local Bifurcation Theory a la Implicit Function Theorem

w = 0 is a solution (the trivial solution) for all λ .

Linearized about zero, the problem is $Cw' = \lambda w$ and the solutions are $\lambda = k, \ k \in \mathbb{N} \cup 0$, and $w \in \text{span}\{\sin kt, \cos kt\}$ For simplicity, we seek only symmetric waves (i.e. even w) Standard bifurcation theory at $\lambda = 1$ leads to the existence locally of a real-analytic curve of even solutions $B = \{(\lambda_{\epsilon}, w_{\epsilon}), |\epsilon| \leq \epsilon_0\} \subset \mathbb{R} \times C_{2\pi}^N$, for any Nwith $\lambda_0 = 1, \ w_0 = 0$ and

$$w_{-\epsilon}(t) = w_{\epsilon}(t+\pi)$$
 and $\lambda_{-\epsilon} = \lambda_{\epsilon} < 1$ if $\epsilon \neq 0$

Global Bifurcation Theory

a la Leray-Schauder Degree or Real-Analytic Variety Theory

Moreover, using degree theory, it can be shown that there is a continuum \mathcal{B} of such solutions in $\mathbb{R} \times C_{2\pi}^N$ with the following properties:

- $\blacktriangleright B \subset \mathcal{B};$
- $\bullet \ 0 < a \le \lambda \le b < \infty \text{ for all } (\lambda, w) \in \mathcal{B};$
- w is even and monotone on $[0, \pi]$ if $(\lambda, w) \in \mathcal{B}$
- ► There is a sequence $(\lambda_k, w_k) \in \mathcal{B}$ such that $1 2\lambda_k w_k(0) \to 0$

Indeed, because our equation involves only real-analytic nonlinear operators, B has a unique global extension as a one-dimensional curve with a real-analytic parametrization at each point, self-intersections and encounters with other manifolds of solutions notwithstanding

Consequently $\mathcal{M}(w_k) \to \infty$ as $k \to \infty$ and there are solutions of arbitrarily large Morse index on the continuum To finish, we give a brief sketch of how real-analytic bifurcation theory interacts with the variational structure to conclude the existence of multiple secondary bifurcation points on the global branch \mathcal{B} .

The abstract theory upon which these conclusions are based considerations of real-analyticity

and it t is worth emphasizing that the existence of a path, not just a connected set, of solutions is essential. This is where the real-analyticity comes in

Definition

 (λ_0, y_0) is a bifurcation point for an equation $G(\lambda, y) = 0$ if there are two sequences $\{(\lambda_k, \hat{y}_k)\}, \{(\lambda_k, \tilde{y}_k)\}$ of solutions of $G(\lambda, y) = 0$ with $\tilde{y}_k \neq \tilde{y}_k$ for all k (same λ_k for both) converging to (λ_0, y_0) in $\mathbb{R} \times Y$.

Suppose that Y is dense in a Hilbert space $(X, \langle \cdot, \cdot \rangle)$ and that $G(\lambda, \cdot)$ is the gradient of a C^2 -functional $g(\lambda, \cdot)$ with $G(\lambda, y) = 0$ and the linearization $\partial_y G[(\lambda, y)] - \mu \iota : Y \to X$ a homeomorphism except for μ in a discrete set $\mathbb{S}(\lambda, y)$. For $\mu \in \mathbb{S}(\lambda, y)$ suppose that $(\mu \iota - \partial_y G[(\lambda, y)])$ is a Fredholm operator of index zero.

this is guaranteed for \mathcal{B} by the real analytic bifurcation theory

Lemma

Suppose that $\mathcal{U} \subset (0, \infty) \times Y$ is an open set, $G : \mathcal{U} \to X$ is C^2 and such that $M(\lambda, y)$ is well-defined for every $(\lambda, y) \in \mathcal{U}$ with $G(\lambda, y) = 0$. Suppose also that for compact sets of solutions in \mathcal{U} , the sets $\mathbb{S}(\lambda, y)$ are uniformly bounded below. Let $S := \{(\lambda(s), y(s)) : s \in (-\epsilon, \epsilon)\} \subset \mathcal{U}$ be a continuous curve of solutions to $G(\lambda, y) = 0$ such that $0 \notin \mathbb{S}(\lambda(s), y(s))$ for all $s \in (-\epsilon, \epsilon) \setminus \{0\}$ and that

$$\lim_{s \nearrow 0} M(\lambda(s), y(s)) \neq \lim_{s \searrow 0} M(\lambda(s), y(s))$$

Then $(\lambda(0), y(0))$ is a bifurcation point.

In the topological version of global bifurcation theory it is difficult, and in general not always possible, to be sure of the existence of such a path upon which secondary bifurcation points can be identified. The following result is now immediate from the existence of a path of solutions given by the analytic global bifurcation theory

Lemma

There is an infinite discrete set Σ of values of points on \mathcal{B} which are a bifurcation points for the Stokes wave equation.

It is not known whether they are turning points or secondary bifurcation points – the numerical evidence points to the turning points but this is completely open mathematically

Strong numerical evidence suggests that in the physical domain the curve \mathcal{B} gives a maximal connected set of Stokes waves of the fundamental period 2π , and that no Stokes waves of period 2π bifurcate from it and that it does it self-intersect.

Scaling

It is easy to see that if (λ, w) is a solution of the Stokes wave equation (B), then so is $(k\lambda, k^{-1}w(kt))$.

So \mathcal{B} has a scaled copy \mathcal{B}_k that bifurcates from (k, 0).

Each of these branches has solutions of minimal period $2\pi/k$ and they can be scaled back to \mathcal{B}

A question asked by Levi-Civita is this: can every solution bifurcating from (k, 0) be scaled back to a point on the branch bifurcating fom (1,0)?

The answer, from this variational theory, is NO!

Because the Morse index tends to infinity along \mathcal{B} , there exist secondary bifurcation points on \mathcal{B}_k that are not copies of behaviour on \mathcal{B}

Hence the formation of singular waves with stagnation points is the cause, mathematically, of secondary sub-harmonic bifurcations on \mathcal{B}_k

When interpreted in the physical domain, they correspond to *period-multiplying* bifurcations of Stokes waves. The physical waves which bifurcate have minimal period $2k\pi$ and there are infinitely many period-multiplying bifurcation points for Stokes waves in the physical domain

NEVERTHELESS THERE IS ESSENTIALLY NO VARIATIONAL THEORY OF THE OCCURRENCE OF THESE PHENOMENA

Collaborators the Real Mathematicians

- Boris Buffoni (Lausanne)
- ▶ Norman Dancer (Sydney)
- Pavel Plotniknov (RaS Novosibirsk)
- ▶ Eric Séré (Paris Dauphine)
- ▶ Eugene Shargorodsky (Kings College London)
- ▶ Eugen Varvaruca (Imperial College London)