Regularity of *p*-harmonic functions in Euclidean spaces and Heisenberg groups

Juan J. Manfredi University of Pittsburgh

Abstract

It is well known that p-harmonic functions have Hölder continuous derivatives for 1 . In this talk we first survey regularity results for p-harmonic $functions in <math>\mathbb{R}^N$. We then consider the generalizations of the p-Dirichlet integral of the type

$$\int_{\Omega} \left(\Lambda^2 + |\mathfrak{X}u|^2 \right)^{p/2} \, dx$$

where $\Lambda \geq 0$, $\Omega \subset \mathbb{R}^N$ is a given domain, and $\mathfrak{X}u = (X_1u, X_2u, \ldots, X_ku)$ is the gradient of u relative to a frame of linearly independent vector fields $\mathfrak{X} = \{X_1, X_2, \ldots, X_k\}$ in \mathbb{R}^N .

An important class of examples is given by Carnot groups, the simplest of which is the Heisenberg group \mathcal{H}^n . In this case \mathfrak{X} is the horizontal frame consisting of 2n linearly independent left-invariant horizontal vector fields and N = 2n+1. Estimating the missing derivative is a serious obstacle when trying to extend the classical regularity results to this setting. This is largely an open question.

We will discuss in some detail the geometry and analysis of \mathcal{H}^n and present two regularity results in the lower dimensional case \mathcal{H}^1 : estimates of Cordes type that give Hölder continuous derivatives for p near 2 and a mixed Moser iteration scheme that works in the nondegenerate case $\Lambda > 0$ for the range $2 \le p < 4$