Ruben Hidalgo

Field of Moduli of Rational Maps

Abstract If \mathbb{K} is any subfield of \mathbb{C} , then we denote by $\operatorname{Rat}_d(\mathbb{K})$ the space of rational maps of degree d whose coefficients belong to \mathbb{K} . We set $\operatorname{Rat}_d = \operatorname{Rat}_d(\mathbb{C})$.

A complex rational map can be written in the form R(z) = P(z)/Q(z), where $P(z), Q(z) \in \mathbb{C}[z]$ are relatively prime polynomials; in which case the degree of R is given by the maximum between the degrees of P and Q. If $P(z) = a_0 + a_1 z + \cdots + a_d z^d$ and $Q(z) = b_0 + b_1 z + \cdots + b_d z^d$, then the condition for R to have degree d is that either $a_d \neq 0$ or $b_d \neq 0$. So there is a natural injective map ϕ : $\operatorname{Rat}_d \hookrightarrow \mathbb{P}^{2d+1}_{\mathbb{C}}$ defined as $\phi(R) = [a_0 : \cdots : a_d : b_0 : \cdots : b_d]$. In this case, as the condition for P and Q to be relatively prime is equivalent to have the resultant $\operatorname{Res}(P,Q) \neq 0$, the space Rat_d can be identified via ϕ with the Zariski open set $\mathbb{P}^{2d+1}_{\mathbb{C}} - X$, where X is the hypersurface defined by $\operatorname{Res}(P,Q) = 0$. In particular, Rat_d is a complex manifold of dimension 2d + 1. Notice that $\operatorname{Rat}_1 = \mathbb{M} = \operatorname{PGL}_2(\mathbb{C})$ is the group of Möbius transformations; a complex Lie group of dimension 3.

If $T \in \mathbb{M}$, and $R \in \operatorname{Rat}_d$, then $T \circ R \circ T^{-1} \in \operatorname{Rat}_d$. We say that R and S are equivalent rational maps (denoted this by the symbol $R \sim S$) if they belong to the same orbit under this action of \mathbb{M} . The quotient space $M_d = \operatorname{Rat}_d/\mathbb{M}$ is the moduli space of rational maps of degree d. The space M_1 can be identified with the Riemann sphere with two cone points of order two, they correspond to the classes of R(z) = z and R(z) = -z, respectively, and another special point corresponding to class of R(z) = z + 1. If $d \geq 2$, then M_d has a natural structure of an affine geometric quotient [4] and the structure of a complex orbifold of dimension 2d - 2 (Milnor proved that $M_2 \cong \mathbb{C}^2$ [2]). Explicit models for M_d seems not to be known for $d \geq 3$.

Let us denote by $\Gamma = \operatorname{Gal}(\mathbb{C})$ the group of field automorphisms of \mathbb{C} . If $R \in \operatorname{Rat}_d$ and $\sigma \in \Gamma$, then σ acts on R, by applying σ to the coefficients of R; we get in this way a rational map $R^{\sigma} \in \operatorname{Rat}_d$ [5]. In general, it may be that R^{σ} is not equivalent to R. Notice that if $R \sim S$ and $\sigma \in \Gamma$, then $R^{\sigma} \sim S^{\sigma}$, in particular, Γ induces an action on the moduli space M_d . The Γ -stabilizer of the class $[R] \in M_d$ is given by the group $\Gamma_R := \{\sigma \in \Gamma : R^{\sigma} \sim R\}$; its fixed field $\mathcal{M}_R = \operatorname{Fix}(\Gamma_R) < \mathbb{C}$ is called the (absolute) field of moduli of R. Notice from the definition that if $R \sim S$, then $\Gamma_R = \Gamma_S$ and $\mathcal{M}_R = \mathcal{M}_S$. For instance, the quadratic polynomial $R_c(z) = z^2 + c$, where $c \in \mathbb{C}$, has field of moduli $\mathbb{Q}(c)$; which in this case is a field of definition. This comes from the fact that $R_c \sim R_d$ if and only if c = d.

A field of definition of $R \in \operatorname{Rat}_d$ is a subfield \mathbb{K} of \mathbb{C} so that there is some $S \in \operatorname{Rat}_d(\mathbb{K})$ with $S \sim R$. Every field of definition of R contains \mathcal{M}_R . In fact, if \mathbb{K} is a field of definition of R, then (up to equivalence) we may assume that R is already defined over it. If $\sigma \in \operatorname{Gal}(\mathbb{C}/\mathbb{K})$, then $R^{\sigma} = R$; in particular $\sigma \in \Gamma_R$.

If $d \ge 2$ is even, then Silverman [3] proved that the field of moduli is a field of definition. He also proves that for polynomials maps this is true. In the same paper, if $d \ge 3$ is odd, then Silverman considered polynomials

$$R(z) = i \left(\frac{z-1}{z+1}\right)^d$$

and proved that they have field of moduli equal to \mathbb{Q} , but that they cannot be definable over it (they even cannot be definable over \mathbb{R} since there is not a circle on the Riemann sphere $\widehat{\mathbb{C}}$ invariant under R). In these examples, the rational map is definable over a degree two extension over its field of moduli.

In this talk I present the following general fact.

Theorem. Every rational map is definable over an extension of degree at most two of its field of moduli.

We will also present necessary and sufficient conditions for a rational map to have a real field of moduli and also to be defined over the reals. Moreover, we provide a simple condition for a rational map to be definable over $\overline{\mathbb{Q}}$.

References

- [1] R.A. Hidalgo. A simple remark on the field of moduli of rational maps. To appear in *Quarterly Journal* of Math. doi:10.1093/qmath/hat012
- [2] J. Milnor. Geometry and dynamics of quadratic rational maps. Experiment. Math. 2 (1993), 37-83.
 With an appendix by the author and Lei Tan.
- [3] J.H. Silverman. The field of definition for dynamical systems on P¹. Compositio Mathematica 98 No. 3 (1995), 269-304.
- [4] J.H. Silverman. The space of rational maps on \mathbb{P}^1 . Duke Math. J. 94 (1998), 41-77.
- [5] J.H. Silverman. Moduli Spaces and Arithmetic Dynamics. CRM Monograph Series. Vol. 30, AMS, 2012.