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ABSTRACT

Summary This talk concerns recent developments in topology optimization. Work in this area has almost
exclusively been concerned with design of solids and structures. Here extensions to fluid mechanics, with
possible applications in biomechanics, are given.

Optimization strategies are present everywhere in engineering and nature. When designing indus-
trial products the designer tries out a sequence of designs in an attempt to gradually improve the
product, i.e., even if not explicitly stated as such, an optimization is performed. In nature, evolution
of biological systems follows paths that we can imagine are governed by an attempt to optimize
some performance index. The mathematical paradigm that models optimization strategies in engi-
neering as well as in nature@ptimization with State Constraints (OSC).

The general form of an optimization problem with state constraints (a problem from OSC) is the
following:

min f(z,u)
. S(z,u) =0
subject to { g, u) < 0.

Here f is the performance measure which is a function of two types of variables: the design
variablez and the state variable. The design variable is what can change when the industrial
product or biological system is modified, and for each such design, the system will take on a certain
state determined by the state variable. For a given design the state is defined by a mathematical
system which we abstractly write(x, v) = 0 and call the analysis or state problem. This system

will frequently be a partial or ordinary differential equation with its origin in continuum mechanics
and is what is traditionally solved in computational engineering. The novelty of OSC is to surround
this problem with an optimization goal. Finally(x,«) < 0 can represent any type of explicit
constraints on the variables.

This talk will give several explicit examples of the above structure as well as discuss numerical
procedures and present solutions. The most direct example of a problem from OSC, much studied
within structural optimization, is the case of a truss structure, whespresents a displacement
vector andr is a vector of cross-section areas of bars. The state prolémyu) = 0, takes the
form

K(x)u=F, (1)

whereF' is the prescribed load vector aid{ x) is the stiffness matrix, which will depend linearly
on z. A frequently used performance measurefis,u) = %FTu, which we interpret as the



flexibility or the negative of the stiffness of the structure. One also easily concludes that this
performance measure equals minus the equilibrium potential energy of the structure. Furthermore,
it has the property that structures optimized by its use have uniformly distributed stress, implying
that available material is used efficiently. This type of structural optimization is usually called
topology optimization since trusses can be excluded from the optimal design by fettiriband

in this way an optimal connection or topology is found.

The continuum analogy of the truss topology optimization problem is wienu) = 0 repre-

sents the equations of linear elasticity. The problem then becomes substantially more complicated.
In fact, a naive extension results in a non-well posed problem which lacks a solution. To remedy
this, different types of regularisations are possible, as extensively discussed by Borrvall [1]. Fur-
thermore, how to obtain a stable finite element discretization is not obvious and certain similarities
with mixed finite elements in, for instance, Stokes flow exist. In Figure 1 a large-scale continuum
topology optimization problem is shown.

Figure 1: A continuum topology optimization problem. The cross-shaped domain should be partly
filled by a prescribed amount of material to obtain an as stiff structure as possible.

A few years ago our attention was drawn to a series of papers (see, e.g. Karch et al. [3]) on model-
ing of arterial vascular trees, e.g. the corona artery in humans. Here a method based on optimality
reasoning (but in our view, without formulating a clear overall goal in the sense of OSC) for con-
structing arterial trees is given. We almost immediately realized the possibility of transferring our
knowledge in truss topology optimization to this domain, and subsequently published the paper
[4]. Indeed, a very close analogy can be constructed: the stiffness objective becomes the objective



of minimizing power losses for a prescribed flow; in the state problem, equation flays the

role of pressure and@’ represents prescribed outflows of fluid. The stiffness matrix becomes a
matrix representing fluid flow resistance, which if Hagen-Poiseuille flow is assumed will depend
on the second power of cross-sectional areas, and, thus, not linearly as in the truss case. In Figure
2 an example of arterial tree optimization is shown.
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Figure 2: An optimal arterial tree problem: inflow and outflow is prescribed; the tree represents
that of minimum pressure loss.

The next natural extension of this line of research is to do topology optimization in the fluid
continuum case, see [2]. The goal is to determine at what places of a predetermined design domain
there should be fluid or not (i.e. solid) in order to extremize a power objective and subject to a
given amount of fluid. Possible applications include design for minimum head loss in pipe bends,
diffusers and valves, optimal conceptual design of air flow channels in aerial vehicles, as well as
design of submerged bridge pillars for minimum environmental impact on watercourse flows. The
state equation is in computations so far taken to be Stokes system governing very viscous flow. An
example is shown in Figure 3.
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Figure 3: The system of channels giving minimum pressure loss for prescribed in- and out-flow is
found. It is concluded that the length of the domain influences the topology.
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