Acceleration of the modified alternating algorithm by the conjugate gradient method for the Cauchy problem for the Helmholtz equation

Mpinganzima Lydie

Department of Mathematics, Linköping University

2–6 April, 2013, Linköping, Sweden
- Cauchy problem for the Helmholtz equation
- Alternating iterative algorithm
- Modified alternating algorithm
- Conjugate gradient method
Formulation of the Cauchy Problem for the Helmholtz equation

- Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain with a Lipschitz boundary \(\Gamma \).
- The boundary \(\Gamma \) is divided into two parts \(\Gamma_0 \) and \(\Gamma_1 \).

Consider the Cauchy problem for the Helmholtz equation:

\[
\begin{aligned}
\Delta u + k^2 u &= 0 \quad \text{in} \quad \Omega, \\
\quad u &= f \quad \text{on} \quad \Gamma_0, \\
\partial_\nu u &= g \quad \text{on} \quad \Gamma_0,
\end{aligned}
\]

where \(k \) is the wave number.

- The problem is ill-posed.
- Applications: characterization of sound sources (Langrenne and Garcia: 2011), . . .
Alternating algorithm

Following

the alternating algorithm may be described in the following way:

\[
\begin{align*}
\Delta u + k^2 u &= 0 \quad \text{in } \Omega, \\
u &= f \quad \text{on } \Gamma_0, \\
\partial_\nu u &= \eta \quad \text{on } \Gamma_1,
\end{align*}
\]

(1)

\[
\begin{align*}
\Delta u + k^2 u &= 0 \quad \text{in } \Omega, \\
\partial_\nu u &= g \quad \text{on } \Gamma_0, \\
u &= \phi \quad \text{on } \Gamma_1,
\end{align*}
\]

(2)

The first approximation \(u_0\) to the solution \(u\) is obtained by solving (1), where \(\eta\) is an arbitrary initial approximation of the normal derivative on \(\Gamma_1\).

Having constructed \(u_{2n}\), we find \(u_{2n+1}\) by solving (2) with \(\phi = u_{2n}\) on \(\Gamma_1\).

We then obtain \(u_{2n+2}\) by solving the problem (1) with \(\eta = \partial_\nu u_{2n+1}\) on \(\Gamma_1\).
Previous works

Nonconvergence of the original algorithm for the Cauchy problem for the Helmholtz equation

Consider the Cauchy problem for the Helmholtz equation in a rectangle \([0, a] \times [0, b]\):

\[
\begin{aligned}
\Delta u(x, y) + k^2 u(x, y) &= 0, & 0 < x < a, & 0 < y < b, \\
u(x, 0) &= f(x), & 0 \leq x \leq a, \\
u_y(x, 0) &= g(x), & 0 \leq x \leq a, \\
u(0, y) &= u(a, y) = 0, & 0 \leq y \leq b.
\end{aligned}
\]

This problem is ill–posed.

The algorithm diverges for

\[
k^2 \geq \pi^2 \left(a^{-2} + (4b)^{-2} \right)
\]
Choice of the interior boundary

- Introduce open subsets ω_i, $i = 1, \ldots, n$ inside Ω with boundaries γ_i, $i = 1, \ldots, n$.
- We assume that every ω_i is a Lipschitz domain.

\[\Omega_1 = \bigcup_{i=1}^{n} \omega_i \]
with Lipschitz boundary $\gamma = \bigcup_{i=1}^{n} \gamma_i$ and
\[\Omega_2 = \Omega \setminus (\Omega_1 \cup \gamma). \]
Choice of the interior boundary γ and the constant μ

Assumption: For all non-zero u,

$$
\int_{\Omega} (|\nabla u|^2 - k^2 u^2) \, dx + \mu \int_{\gamma} u^2 \, dS > 0,
$$

for $u \in H^1(\Omega)$ such that $u \neq 0$.

Theorem

Let

\[\Lambda_\mu = \min_{u \in H^1(\Omega), \|u\|_2 = 1} \int_\Omega |\nabla u|^2 \, dx + \mu \int_\gamma u^2 \, dS, \]

and

\[\Lambda = \min_{u \in H^1(\Omega), u|_\gamma = 0, \|u\|_2 = 1} \int_\Omega |\nabla u|^2 \, dx. \]

Then there exists a positive constant \(C \) such that

\[\Lambda - \Lambda_\mu \leq \frac{C(\Lambda)^{3/2}}{\mu^{1/2}}. \]
Corollary

If Λ is positive, then
\[
\int_{\Omega} \left(|\nabla u|^2 - k^2 u^2 \right) \, dx + \mu \int_{\gamma} u^2 \, dS > 0, \quad \text{for all } u, \quad u \neq 0 \quad \text{on } \gamma.
\]

for sufficiently large μ.

Modified alternating iterative algorithm for the Cauchy problem for the Helmholtz equation

The modified algorithm will consist of solving the following well–posed problems alternatively:

\[
\begin{aligned}
\Delta u + k^2 u &= 0 \quad \text{in } \Omega \setminus \gamma, \\
u &= f \quad \text{on } \Gamma_0, \\
\partial_\nu u &= \eta \quad \text{on } \Gamma_1, \\
[u] + \mu u &= \xi \quad \text{on } \gamma, \\
[u] &= 0 \quad \text{on } \gamma,
\end{aligned}
\]

\[
\begin{aligned}
\Delta v + k^2 v &= 0 \quad \text{in } \Omega \setminus \gamma, \\
\partial_\nu v &= g \quad \text{on } \Gamma_0, \\
v &= \phi \quad \text{on } \Gamma_1, \\
v &= \varphi \quad \text{on } \gamma.
\end{aligned}
\]

The first approximation \(u_0\) to the solution \(u\) is obtained by solving (3), where \(\eta\) is an arbitrary initial approximation of the normal derivative on \(\Gamma_1\) and \(\xi\) is an arbitrary approximation of \([\partial_\nu u] + \mu u\) on \(\gamma\).

Having constructed \(u_{2n}\), we find \(u_{2n+1}\) by solving (4) with \(\phi = u_{2n}\) on \(\Gamma_1\) and \(\varphi = u_{2n}\) on \(\gamma\).

We then obtain \(u_{2n+2}\) by solving the problem (3) with \(\eta = \partial_\nu u_{2n+1}\) on \(\Gamma_1\) and \(\xi = [\partial_\nu u_{2n+1}] + \mu u_{2n+1}\) on \(\gamma\).
Convergence of the modified alternating iterative algorithm

Theorem

Let \(f \in H^{1/2}(\Gamma_0) \) and \(g \in H^{1/2}(\Gamma_0)^* \), and let \(u \in H^1(\Omega) \) be the solution to the Cauchy problem for the Helmholtz equation given above. Then, for every \(\eta \in H^{1/2}(\Gamma_1)^* \) and every \(\xi \in H^{1/2}(\gamma)^* \), the sequence \((u_n)_{n=0}^{\infty}\) obtained from the modified alternating algorithm converges to \(u \) in \(H^1(\Omega) \).
Given $\eta \in H^{1/2}(\Gamma_1)^*$ and $\xi \in H^{1/2}(\gamma)^*$, let us define

$$B(\eta, \xi) = (\partial_\nu v |_{\Gamma_1}, [\partial_\nu v] + \mu v |_{\gamma}).$$

We find that

$$(\eta_{k+1}, \xi_{k+1}) = B(\eta_k, \xi_k).$$
Consider the following problem

\[
\begin{cases}
\Delta u + k^2 u = 0 & \text{in } \Omega \backslash \gamma, \\
u = 0 & \text{on } \Gamma_0, \\
\partial_\nu u = \eta & \text{on } \Gamma_1, \\
[\partial_\nu u] + \mu u = \xi & \text{on } \gamma, \\
[u] = 0 & \text{on } \gamma,
\end{cases}
\]

Introduce a linear operator \(N : H^{1/2}(\Gamma_1)^* \times H^{1/2}(\gamma)^* \to H^{1/2}(\Gamma_0)^* \) by

\[
N(\eta, \xi) = \partial_\nu u \big|_{\Gamma_0},
\]

where \(\eta \in H^{1/2}(\Gamma_1)^* \), \(\xi \in H^{1/2}(\gamma)^* \).

If \(u \in H^1(\Omega) \) solves the Cauchy problem for the Helmholtz equation with \(f = 0 \) on \(\Gamma_0 \), the problem can then be formulated as

\[
N(\eta, \xi) = g.
\]
Adjoint operator N^*

Lemma

Let $\zeta \in H^{1/2}(\Gamma_0)^*$, and let v solves the

\[
\begin{cases}
\Delta w + k^2 w = 0 & \text{in } \Omega \setminus \gamma, \\
\partial_\nu w = \zeta & \text{on } \Gamma_0, \\
w = 0 & \text{on } \Gamma_1, \\
w = 0 & \text{on } \gamma.
\end{cases}
\]

Then $N^*(\zeta) = (\partial_\nu w|_{\Gamma_1}, [\partial_\nu w] + \mu w|_{\gamma})$.
Consider the following functional

\[J(\eta, \xi) = \|g - N(\eta, \xi)\|_{H^{1/2}(\Gamma_0)} \]

Let us define

\[L_N(\eta, \xi) = (\eta, \xi) + \alpha N^*(g - N(\eta, \xi)), \]

where \(\alpha \) is a fixed constant chosen so that \(0 < \alpha < \|N\|^{-2} \).

The Landweber method produces iterates

\[(\eta_{k+1}, \xi_{k+1}) = L_N(\eta_k, \xi_k). \]
Theorem

For any $\eta \in H^{1/2}(\Gamma_1)^*$ and $\xi \in H^{1/2}(\gamma)$, the iterates produced by the Landweber method and the modified alternating algorithm are identical, i.e.,

$$L_N(\eta, \xi) = B(\eta, \xi).$$

(5)
The conjugate gradient method for the problem is as follows

1. Choose initial $\eta_0 \in H^{1/2}(\Gamma_1)^*$ and $\xi_0 \in H^{1/2}(\gamma)^*$. Denote $\chi_0 = (\eta_0, \xi_0)$ and $(H^{1/2})^* = H^{1/2}(\Gamma_1)^* \times H^{1/2}(\gamma)^*$.
2. $d_0 = g - N(\chi_0)$;
3. $p_1 = s_0 = N^*(d_0)$;
4. for $k = 1, 2, \ldots$, unless $s_{k-1} = 0$, compute:
 5. $q_k = N(\chi_k)$;
 6. $\alpha_k = \|s_{k-1}\|_{(H^{1/2})^*}/\|q_k\|_{H^{1/2}(\Gamma_0)^*}$;
 7. $\chi_k = \chi_{k-1} + \alpha_k p_k$;
 8. $d_k = d_{k-1} - \alpha_k q_k$;
 9. $s_k = N^*(d_k)$;
 10. $\alpha_k = \|s_k\|_{(H^{1/2})^*}/\|s_{k-1}\|_{(H^{1/2})^*}$;
 11. $p_{k+1} = s_k + \beta_k p_k$.

Numerical experiments

- The domain is the rectangle $\Omega = (0, 1) \times (0, L)$.
- We put $\Gamma_0 = (0, 1) \times \{0\}$ and $\Gamma_1 = (0, 1) \times \{L\}$.
- We choose $L = 0.2$, the computational grid $N = 401$, and $M = 81$ and the following exact data:

$$u(x, 0) = \left(3 \sin \pi x + \frac{\sin 3\pi x}{19} + 9 \exp(-30(x - L)^2) \right) x^2 (1 - x)^2,$$

and

$$u(x, L) = 2 \left(8 \sin \pi x + \frac{\sin 3\pi x}{17} + 20 \exp(-50(x - L)^2) \right) x^2 (1 - x)^2.$$
Numerical experiments

Figure 1: Modified algorithm (left) after 1500 iterations and the conjugate gradient method (right) after 20 iterations.
THANK YOU FOR YOUR ATTENTION.