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Motivating Data Example

A Cryo-em images & image clustering
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mode-2 (spatial row) mode- 2 (spatial row)

common preprocessing: dimension reduction using PCA

5000 or more images, each is of 130 x 130 pixels, dim = 16,900
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e PCA is probably the simplest and most commonly used

dimension reduction tool in many real data applications.

e When data are tensor structured (or arrays), such as images

here as order-2 tensors, we need more efficient dimension

reduction tool.

In this talk,

e MPCA (multilinear principal component analysis),

e Statistical aspects of MPCA for tensor data.



Array (tensor) data

w mode-2 (row)
Color tree

(original)

mode-2 (row)

mode-1 (column)

A\

color image as an order-3 tensor BW image as an order-2 tensor



Array (tensor) data

EEG Data (image by D. Myers)
e 122 people (77 alcoholic, 45 control)
e 256 time points, 64 channels
X; . 256 x 64, order-2 tensor
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Data structure -arrays (tensors)

e Each observation is an order-m tensor,

X, =2Z,+€&; ERplXpQXWXpm, 1=1,...,n,

where Z, is the signal component and &; is the noise part.

Collectively, {X;}7_; form an order-(m + 1) data tensor.

e When m = 2, we have matrix-variate observations.

Data tensor (array)




For illustration simplicity, we present the case

where observations are matrices, i1.e., m = 2.
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MPCA & HOSVD model for matrix data

e Each observation is an order-2 tensor, i.e., a matrix,
X; = Z; + €;, GRqu, 1=1,...,n,
= M+ AU;B' +¢;.

e [ he signal part is assumed a tensor structure,
Z =M+ AUB'", vec(2) = vec(M) + (B® A)vec(U),

M € RPX4: mean tensor, (©: orthogonal matrices,
A€ OPXPo, B € 09*90 (often pg < p, 90 < q),

U € RP0X40: g coefficient tensor whose entries are random.

e The noise component vec(e;) I N(@,I), i=1,...,n, m = pq.

replaced by
e General order-k tensor model: (BRA) +—— (AR QA7)




Notation

e Matrix-variate observations: X, € RP*9,
e | |F: Frobenius norm.

o O consists of matrices M € RPXP such that M M = Iﬁ.

pXp
o Ag, Bg (true), A, B (estimate).

e p: reduced rank for column subspace dimensionality.

e ¢. reduced row subspace dimensionality.



High order SVD (De Lathauwer et al., 2000)

mode-1 unfolding

&X(l) = [Xl—X,...,Xn—X]pan P

-~

~(hosvd ~
A( osvd) € RPXP consists of p leading eigenvectors of X(l)X(Tl).
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duipjojun z-apow

[ X1 — X ! mode-2 unfolding
Xo — X
* X0 = ;
| Xn — dgxnp
é(hosvd)

€ RI%4 consists of § leading eigenvectors of X(Q)X(TQ).
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Multilinear PCA (best rank-(p, q) approximation)
(De Lathauwer et al., 2000; Lu et al., 2008)

MPCA eigen-system satisfies the following stationary conditions.

& A(MPCa) c RPXP consists of § leading eigenvectors of

~(mpca) ~(mpca) T

& B(MPCa) c RIXT consists of § leading eigenvectors of

~(mpca) ~(mpca)T
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HOSVD & MPCA

Extracting leading eigenvectors from each mode using
® X(1)(In® B) & X(5)(In® A)  (MPCA)

A(mpca) qnq B(MPCa) gre more efficient than A(hosvd) gng B(hosvd)

under some technical conditions (Hung et al., 2012)

We will focus on MPCA and use notation A and B.

(superscript dropped)
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Experimental Study
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Experimental study

A
»

Compare MPCA and PCA
on Olivetti Faces data.

mode-1 (column)

Another data example:
cryo-em image clustering
(Chen et al., 2014, “4-SUP",
which is a self-updating clus-
tering algorithm based on

minimum ~y-divergence with

mode- 1 (spatial column)
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ages)

15



Experimental study on Olivetti Faces data set

e 400 face images of 64 x64: partition them to 100-300 training-

test sets.

e Both MPCA and PCA are applied on the training images to
produce basis to reconstruct the test images.

— MPCA: 24 row and 24 column eigenvectors are used to
generate 576 basis (24 is selected by hypothesis test for
95% explained-variation)

— PCA: 576 (= 24 x 24) eigenvectors

500 replicates, for random partition into training-test subsets, are

performed to compare the mean test error.

MPCA PCA The error is defined as the Frobe-

Mean 452 2870 _ -
SD 4 43 nius norm for two images.
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20 test faces randomly drawn (rows 1-2), reconstructions by MPCA
(rows 3-4) and PCA (rows 5-6).
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Different performances of MPCA and PCA

Mean Face 5x5 bases  10x10 bases 15x15 bases 20x20 bases 24x24 bases Target Face
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Mean Face 25 bases 100 bases 225 bases 400 bases 576 bases Target Face

= E N RS

Test image reconstruction, MPCA (top) and PCA (bottom).

The image turns its view to left with 10 x 10 basis elements;
the pupil turns to the left with 15 x 15 basis elements;
nostrils and folds of eyelids show up with 20 x 20 basis elements;

the facial curves become clear when 24 x 24 basis elements.
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Leading 100 bases, MPCA (b® a € R?990) ys PCA (v € R#096)

MPCA: more module oriented. PCA: too much information in a basis.
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cryo-EM image analysis

[ Cryo Imaging ]

[/ Alignment \]

X,Y shift
—> ﬂ

In-plane rotation

Particle Boxing

Clustering and
Average

20



5000 Ribosome cryo-EM images

MPCA for dimension reduction, then followed by clustering

analysis on reduced core matrices.
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One cluster of images

denoising by taking cluster average
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24 Cluster Averages for Ribosome Data
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One Interesting Example
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Statistical Theory

Why MPCA is successful?
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Usual probabilistic PCA model on vec(X)

e Assume vec(X — ) = Tv +vec(e), pn= E(X): mean

~

— [Mouxr: Basis (PCs) of interest, m = pq, » < m;

— v: PCA scores (random r-vector);

— v and e are stochastically independent;

— &: random error with E(vec(e)) = 0, Cov(vec(e)) = o2 1.
n

° {Xi C Rpxq} . data set, X = %Z;’}:l X;

1=

e Minimize %Z?’zl vec(X; — X) — Tw;||2 over T € Oy, v €RT

~

— I: leading eigenvectors of %Zvec(Xi — X)vec(X; — X)T

26



MPCA model & rationale

Recall PCA model: vec(X — u) = Tv + vec(e), no structure on

span(l") except for the orthonormality.
MPCA : X —p=AgUB} +«.
e Column basis Ag € Opxp, and row basis Bg € Ogxgq,-

e Random coordinate (or MPCA score) U,
EWUutY, E(UTU): nonsingular, distinct characteristic roots.

e U and e: independent; E(e) = 0 and Cov{vec(e)} = 2T
o vec(AoUBg) = (Bg ® Ag)vec(U)

MPCA: I := By ® Ag, structured T' (cf. non-structured T')
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e PCA: vec(X — pu) = v+ vec(e), no structure on span(l") except
for in Opyxr, m = pq. Order O(pq) vs order O(p + q).

e Kronecker envelope span(Bg® Ag): unique minimal subspace
such that ' C span(Bg ® Ag) (Li et al., 2010)

You can always have " C span(l; ® Ip), or span(Q ® P).

|: = (Bo X AO)G = |:V = (Bo X AO)GV

Gv folded into a pg X qo matrix U, then

- Tv = (Bp ® Ag)Gr = vec(AgUBY) <+ this is MPCA model

e MPCA: I = Bg® Ag, structured I'; it uses a structured larger
subspace to enclose . span(Bp ® Ap) 2 span(l);

fewer parameters for span(By®Ag), ppo-l-qqo—pO(pO+1HQ'QO(qo+1)
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Dimensionality required

MPCA requires less parameters

Number of required parameters at (p,q) = (10,10) and pg = 5

qo0 1 2 3 4 5
MPCA 44 52 59 65 70
PCA 485 945 1380 1790 2175

— More efficient for small sample size

MPCA is a bigger subspace, which is a Kronecker envelope, to
contain a smaller PCA subspace. Because of its Kronecker prod-
uct structure, it requires fewer parameters to specify this sub-

space.

This is an approach of trading bias for variance.
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Pictorial illustration for Kronecker envelope, m = p X q.

Kronecker envelope: span(B @ A)

MPCA: span(B ® A)

30



Chen, T.L. et al. (2014). v-SUP: a clustering algorithm for cryo-electron microscopy images
of asymmetric particles. Ann. Applied Statist. — MPCA application to cryo-em image
clustering

De Lathauwer, L., De Moor, B. and Vandewalle, J. (2000a). A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl., 21, 1253-1278. — high-order SVD

De Lathauwer, L., De Moor, B. and Vandewalle, J. (2000b). On the best rank-1 and rank-
(R1, Ro,...,Ry) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21,
1324-1342. — best specified-rank tensor decomposition

Hung, H., Wu, P.S., Tu, I.P. and Huang, S.Y. (2012). On multilinear principal component
analysis of order-two tensors. Biometrika, 99, 569-583. — MPCA in statistical framework

Hung, H. and Wang, C.C. (2012). Matrix variate logistic regression model with application to
EEG data. to appear in Biostatistics. — a special-case tensor regression model

Li, B., Kim, M.K. and Altman, N. (2010). On dimension folding of matrix- or array-valued
statistical objects. Annals of Statistics, 38, 1094-1121.— Kronecker envelope

Lu, H., Plataniotis, K.N. and Venetsanopoulos, A.N. (2008). MPCA: Multilinear principal
component analysis of tensor objects. IEEE Transactions on Neural Networks, 19, 18-39.
— MPCA

Tyler, D.E. (1981). Asymptotic inference for eigenvectors. Annals of Statistics, 9, 725-736.
— Technique for asymptotics

Ye, J. (2005). Generalized low rank approximations of matrices. Machine Learning, 61, 167-
191, 2005. — implementation algorithm, GLRAM (iterative alternating LS)

Zhang, D. and Zhou, Z.H. (2005). (2D)?PCA: Two-directional two-dimensional PCA for
efficient face representation and recognition. Neurocomputing, 69, 224-231.
— (2D)?PCA, before the appearing of MPCA

Thank You for Your Attention
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Inclusion properties between (A, B) and (Ag, By)

Proposition 1.(a) If p > pg and q > qg, then span(A) D span(Ap)
and span(B) D span(Bp).

(b) If p < pg and q > qg, then span(A) C span(Ag) and span(B) 2
span(Bp).

(c) If p > pg and q < qp, then span(A) D span(Ag) and span(B) C
span(Bp).

(d) If p < pg and q < qg, then span(A) C span(Ag) and span(B) C
span(Bp).
e MPCA targets span(Ag) & span(Bg) when (p,q) = (po, q0).-

e With p > pg or g > qp being over-specified, MPCA subspace

still contains span(Ag) or span(Bg) as proper subspace.

e When (p,q) < (po,q0), MPCA finds subspaces of the true.
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Asymptotic properties of MPCA
e MPCA are functions of sample covariance matrix Sp,

as it finds mingco - Beo,,; trace ((B ® A)1'S,(B® A)).

X
e X, iid copies of X with finite 4t" moments, Cov(vec(X)) =X
CLT: Vn(Sn— =) % N, vec(N) ~ N(0, =)
>N=U_ 2+ Knm)(X®X), if X ~N, K: commutation matrix
Basic technique: based on the CLT result above, plus
e Delta method /n (f(Sn) — f(X)) 3 N (0, =),
where ;= Vf(X) - Zy - V()T

e Calculation of gradients on structured subsets

Vi) = 8vef(fZ)T
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Weak convergence of MPCA components (A, B)

For (p,9) < (po,q0).* we have the limiting distribution

([ ] 3 ]) 4 e,

where ([A; B] = [§]>
D p— 80’1 . ) aa’ﬁ _ ab]_ _ _ 8bq~
When (ﬁ)gj) — (pO>QO): for i = 17 s PO and j: ]_7 » 40
Oa; T T
8vec(£)T = {@i ® vec(Pp,) @ (Ailp — E[X Pp X" ]) } (Kp,q ® Ipg)
0b; -
J — . : T +
vec(2)T {b] @ vec(Pa,) ® (£l — E[XT PaoX]) } (Ipg @ Kp,q)-

*For p > pg or g > qo the eigenvalues are multiple roots and the tensor principal
components are not uniquely determined.
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Asymptotic efficiency of MPCA

e MPCA and (2D)?PCA target the same subspace

e In favor of MPCA since it is less noise-contaminated.

¢ MPCA: E[(X — ) Ppy(X — )], BI(X — )" Ps(X — )]
(2D)?PCA: E[(X — u)(X = )"], E[(X = p)" (X — )]

Theorem 1. Let (5,§) = (po, qo) and let (A, B) be the (2D)?PCA

components under (pg,qo). Assume also the normality of vec(X).*
Then, (“aCov” stands for asymptotic Cov)

aCOV<V6C(PB®A)> — aCov <VeC(PB®A)) > 0.

*It is not difficult to get that A (or B) is more efficient than A (or B, resp).

Difficulty arises when considering B ® A due to the correlation between A and
B.
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EXxpression of differentials

Sketch of the proof (Lemma 1):

1. (A, B) satisfies the set of stationary equations

~

Aiaia 1= 17 » Py

q
(Z (bj ® Ip)TZ(bj & Ip)) a;

j=1

p
1=1

2. Let X be perturbed to X 4¢3 with the corresponding perturbed
a; + edi, )‘i + 6)'\2', and b] -+ Gb]
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Expression of differentials

~

3. Equating the terms with order e we deduce that, fores =1,.--- ,p,

).‘7; — CL?ZBG,Z',
q
{Nlp— > (b ® Ip)TZ(bj ® Ip)} T < ga;,
j=1

a;

where

~

q
>p = BXBB'+BBHX'T+ Y (b0 )" 5(b; ® I)
j=1

with B =1 bqy,---,bs ] satisfying BB+ BB = 0.

The red part makes the derivations rather complicated. If it van-

ishes, then the proof is completed by the usual method. When?
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Expression of Dy 5 5

Note that Z?zl al'> ga; can be expressed as

ol E[X(BB' + BB')X1]a,

.Mﬁz

~
|
=

|
M

(6] EIX PoXT]b; 4+ b] E[X P4 X"]b;) = 0

<
[
=

by noting that b; is an eigenvector of E[XP4X'] and b]Tbj = 0.
T hus,

\/ﬁ( ®(5,q) — (7,9 ) 4 D (p,4) vec(V),
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EXxpression of D H,

When (p,q3) = (po,q0), there must exist a nonsingular matrix
n such that Bo = Bn. From X = AgUB{ + ¢,
E[X(BB' + BBT)Xx 1]
= E[AoUn’ (BT B + B B)nUT A{] + o?trace(B' B + B! B)I,
= 0

by noting that BB+ BT B = 0. Thus,
vec(A) vec(A) d
vn ([ vec(B) ] B !vec(B) ]) — DHﬁ,éveC(N)’

This is NOT true when (p,q) < (po,q0). We still can't solve this
problem!
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