Explicit Estimators for a Banded Covariance Matrix in a Multivariate Normal Distribution

Presentation

Authors: Emil Karlsson, Martin Singull
Matematiska institutionen
Linköpings universitet

August 25, 2014
History

- Patterned covariance matrices
- Banded covariance matrices
- Methods: explicit, maximum likelihood and back again
List of symbols

\(A_{m,n} \) - matrix of size \(m \times n \)
\(M_{m,n} \) - the set of all matrices of size \(m \times n \)
\(a_{ij} \) - matrix element of the \(i \)-th row and \(j \)-th column
\(a_n \) - vector of size \(n \)
\(c \) - scalar
\(X \) - random matrix
\(x \) - random vector
\(X \) - random variable
Explicit Estimator

Previous results

Proposition 1

Let $X \sim N_{p,n}(\mu 1_n', \Sigma^{(m)}_{(p)}, I_n)$. Explicit estimators are given by

\[\hat{\mu}_i = \frac{1}{n} x_i' 1_n, \]

\[\hat{\sigma}_{i,i} = \frac{1}{n} x_i' C x_i \text{ for } i = 1, \ldots, p, \]

\[\hat{\sigma}_{i,i+1} = \frac{1}{n} \hat{r}_i' C x_{i+1} \text{ for } i = 1, \ldots, p - 1, \]

where $\hat{r}_1 = y_1$ and $\hat{r}_i = x_i - \hat{s}_i \hat{r}_{i-1}$ for $i = 2, \ldots, p - 1$,

\[\hat{s}_i = \frac{\hat{r}_{i-1}' C x_i}{\hat{r}_{i-1}' C x_{i-1}}, \]

where $C = I_n - \frac{1}{n} 1_n 1_n'$.

Authors: Emil Karlsson, Martin Singull

Explicit Estimators for a Banded Covariance Matrix
Previous results

Theorem 1

The estimator \(\hat{\mu} = (\hat{\mu}_1, \ldots, \hat{\mu}_p)' \) given in Proposition 1 is unbiased and consistent, and the estimator \(\hat{\Sigma}^{(m)}_{(p)} = (\hat{\sigma}_{ij}) \) is consistent.
Explicit Estimator
Purpose of this work

Goals:
- Find an unbiased estimator for the covariance matrix.
- Generalize results into a general linear model.

Limitations:
- Study the case where $\Sigma^{(p)}_{(1)}$ instead of $\Sigma^{(p)}_{(m)}$.

Authors: Emil Karlsson, Martin Singull
Find an unbiased estimator
Rewriting of estimator

Proposition 2

Let \(X \sim N_{p,n}(\mu 1_n', \Sigma^{(1)}_{(p)}, I_n) \). Explicit estimators are given by

\[
\hat{\sigma}_{i,i+1} = \frac{1}{n} x_i' A_{i-1} x_{i+1} \text{ for } i = 1, \ldots, p - 1,
\]

where \(A_i = C - C \hat{r}_i (\hat{r}_i'C\hat{r}_i)^{-1} \hat{r}_i'C \),

with \(A_0 = C \),

where \(\hat{r}_1 = y_1 \) and \(\hat{r}_i = x_i - \frac{\hat{r}_{i-1}'Cx_i}{\hat{r}_{i-1}'Cx_{i-1}} \hat{r}_{i-1} \) for \(i = 2, \ldots, p - 1 \),

with \(C = I_n - \frac{1}{n} n 1_n 1_n' \).
Definition 1

Let \(x \sim N_n(\mu_x, I_n), y \sim N_n(\mu_y, I_n) \) and \(A \in M_{n,n} \). Then \(x' Ay \) is called a bilinear form.

Theorem 2

The bilinear form \(x' Ay \) has the following properties.

(i) \(E[x' Ay] = \text{tr}(A \text{cov}(x, y)) \)

(ii) \(\text{var}[x' Ay] = \text{tr}(A \text{cov}(x, y))^2 + \text{tr}(A \text{var}(x)A \text{var}(y)) = \text{tr}(A) \text{cov}(x, y)^2 + \text{tr}(A^2) \text{var}(x) \text{var}(y) \).
Find an unbiased estimator
Properties of the central matrix

The central matrix for \(\hat{\sigma}_{i,i+1} = \frac{1}{n} x'_i A_{i-1} x_{i+1} \)

\[
A_i = C - C \hat{r}_i (\hat{r}_i' C \hat{r}_i)^{-1} \hat{r}_i' C
\]

Properties:
- Idempotent, \(A_i^2 = A_i \)
- Symmetric, \(A_i' = A_i \)

Authors: Emil Karlsson, Martin Singull
Proposition 3

Let $X \sim N_{p,n}(\mu 1_n', \Sigma^{(1)}_{(p)}, I_n)$. Explicit estimators are given by

$$\hat{\sigma}_{ii} = \frac{1}{n-1} x_i' C x_i \text{ for } i = 1, \ldots, p,$$

$$\hat{\sigma}_{12} = \frac{1}{n-1} x_1' C x_2,$$

$$\hat{\sigma}_{i,i+1} = \frac{1}{n-2} x_i' A_{i-1} x_{i+1} \text{ for } i = 2, \ldots, p-1,$$

where $A_i = C - C \hat{r}_i (\hat{r}_i' C \hat{r}_i)^{-1} \hat{r}_i' C$, with $A_0 = C$,

where $\hat{r}_1 = y_1$ and $\hat{r}_i = x_i - \frac{\hat{r}_{i-1}' C x_i}{\hat{r}_{i-1}' C x_{i-1}} \hat{r}_{i-1}$ for $i = 2, \ldots, p-1$,

with $C = I_n - \frac{1}{n} 1_n 1_n'$.
Find an unbiased estimator

Results

Theorem 3

The estimators from Proposition 3 are unbiased and consistent.

Variance is known:

\[\text{var}(\hat{\sigma}_{i,i+1}) = \frac{\sigma_{i,i+1}^2 + \sigma_{ii} \sigma_{i+1,i+1}}{n-2} \]
Generalization to a general linear model

General linear model

Assumptions:

General linear model

\[Y = XB + E \sim N_{n,p}(XB, I_n, \Sigma^{(p)}_{(1)}) \]

- \(Y \) and \(E \) are \(n \times m \) random matrices
- \(X \) is a known \(n \times p \)-design matrix with full rank
- \(B \) is an unknown \(p \times m \)-matrix of regression coefficients.
- \(n \geq m + p \), and the rows of the error matrix \(E \) are independent \(N_m(0, \Sigma) \) random vectors.
Problems when generalizing

- The expected value XB differs from $\mu 1'$.
- The design matrix affects the degrees of freedom.
Transformation:

\[(Y - XB) \sim N(0, I_n, \Sigma) \text{ can be treated as}\]

\[(y_i - Xb_i) \sim N(0, \Sigma) \text{ were each part is handled separately}\]
Let \(Y = XB \sim N_{p,n}(XB, \Sigma^{(1)}_{(p)}, I_n) \), where \(\text{rank}(X) = k \). Explicit estimators are given by

\[
\hat{B} = (X'X)^{-1}X'Y,
\]

\[
\hat{\sigma}_{ii} = \frac{1}{n-k}y'_iDy_i \text{ for } i = 1, \ldots, p,
\]

\[
\hat{\sigma}_{i,i+1} = \frac{1}{n-k-1}y'_iA_{i-1}x_{i+1} \text{ for } i = 2, \ldots, p-1,
\]

where \(A_i = D - D\hat{r}_i(\hat{r}'_iD\hat{r}_i)^{-1}\hat{r}'_iD \) with \(A_0 = D \),

where \(\hat{r}_1 = y_1 \) and \(\hat{r}_i = y_i - \frac{\hat{r}'_{i-1}Dy_i}{\hat{r}'_{i-1}Dy_{i-1}}\hat{r}_{i-1} \) for \(i = 2, \ldots, p-1 \),

with \(D = I_n - X(X'X)^{-1}X' \).
Theorem 4

The estimators from Proposition 4 are unbiased and consistent.

Known variance:

\[
\text{var}(\hat{\sigma}_{i,i+1}) = \frac{1}{n-2}(A)(\sigma_{i,i+1}^2 + \sigma_{i,i} \sigma_{i+1,i+1})
\]
Based on the 100000 averages of samples with $n=20$, explicit unbiased average estimators, with true value within parenthesis, are given by,

$$
\hat{\Sigma}_{\text{new}} = \begin{pmatrix}
4.99501(5) & 1.99590(2) & 0.00000 & 0.00000 \\
1.99590(2) & 4.99238(5) & 0.99678(1) & 0.00000 \\
0.00000 & 0.99678(1) & 5.00026(5) & 3.00265(3) \\
0.00000 & 0.00000 & 3.00265(3) & 5.00368(5)
\end{pmatrix},
$$

and the previous estimators are given by,

$$
\hat{\Sigma}_{\text{prev}} = \begin{pmatrix}
4.74526(5) & 1.89611(2) & 0.00000 & 0.00000 \\
1.89611(2) & 4.74276(5) & 0.89710(1) & 0.00000 \\
0.00000 & 0.89710(1) & 4.75025(5) & 2.70239(3) \\
0.00000 & 0.00000 & 2.70239(3) & 4.75350(5)
\end{pmatrix}.
$$
Based on the 100000 averages of samples with $n=80$ and 20 regression parameters, where X and B were randomly generated, unbiased explicit average estimators, with true value within parenthesis, are given by,

\[
\hat{\Sigma}_{\text{new}} = \begin{pmatrix}
3.9986(4) & 0.9997(1) & 0 & 0 & 0 \\
0.9997(1) & 3.0051(3) & 2.0024(2) & 0 & 0 \\
0 & 2.0024(2) & 4.9989(5) & 2.9976(3) & 0 \\
0 & 0 & 2.9976(3) & 4.9941(5) & 2.9950(3) \\
0 & 0 & 0 & 2.9950(3) & 4.9935(5)
\end{pmatrix},
\]

and the previous estimators are given by,

\[
\hat{\Sigma}_{\text{prev}} = \begin{pmatrix}
2.9989(4) & 0.7497(2) & 0 & 0 & 0 \\
0.7497(2) & 2.2538(3) & 1.4768(2) & 0 & 0 \\
0 & 1.4768(2) & 3.7492(5) & 2.2107(3) & 0 \\
0 & 0 & 2.2107(3) & 3.7455(5) & 2.2088(3) \\
0 & 0 & 0 & 2.2088(3) & 3.7451(5)
\end{pmatrix}.
\]
Conclusion:

- The unbiased version makes an considerable improvement
Topics:

- Find unbiased estimator for $\Sigma_{(m)}^{(p)}$
- Compare it to other estimators (for example MLE) for banded matrices.
- Study the variance to determine efficiency