Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model

Yongge Tian

Central University of Finance and Economics
E-mail: yongge.tian@mail.com

LinStat, Aug 25, 2014
Outline

• Statistical motivations.

• How to characterize general matrix equalities/inequalities.

• Structures of covariance matrices of estimations (BLUEs).

• Formulas for ranks/inertias of BLUEs’/OLSEs’ covariance matrices.

• Equalities/inequalities of BLUEs’/OLSEs’ covariance matrices.

• Some applications under two transformed models.
Consider a general linear regression model

\[y = X\beta + \epsilon, \quad E(\epsilon) = 0, \quad \text{Cov}(\epsilon) = \Sigma, \quad (1) \]

where

- \(y \in \mathbb{R}^{n \times 1} \) is an observable random vector,
- \(X \in \mathbb{R}^{n \times p} \) is a known matrix of arbitrary rank,
- \(\beta \in \mathbb{R}^{p \times 1} \) is a vector of unknown parameters,
- \(\epsilon \in \mathbb{R}^{n \times 1} \) is an unobservable random vector,
- \(\Sigma \in \mathbb{R}^{n \times n} \) is a known or unknown matrix.
Assume that a linear estimation Gy is given under a general linear model. Then the covariance matrix of Gy is which is quadratic matrix function with respect to G. If G is not unique, e.g., it involves some variable matrix, then

$$\text{Cov}(GY) = G\Sigma G'$$

may vary with respect to the choice of G.

Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model.
Assume that a linear estimation Gy is given under a general linear model. Then the covariance matrix of Gy is which is quadratic matrix function with respect to G. If G is not unique, e.g., it involves some variable matrix, then

$$\text{Cov}(GY) = G\Sigma G'$$

may vary with respect to the choice of G.

Covariance matrices of estimations plays essential roles in determining properties of estimations. In particular, equalities and inequalities for covariance matrices can be utilized in the comparison of optimality of estimations under various assumptions. Hence, it is desirable to establish as many as possible equalities and inequalities of covariance matrices of estimations.
General forms of equalities and inequalities of covariance matrices of estimations Gy can simply be written as

$$\text{Cov}(Gy) = A,$$

$$\text{Cov}(Gy) \succeq A \ (\succ A, \prec A, \preceq A),$$

where A is any given symmetric matrix. If for example, Gy is taken as the best-known BLUE of an estimable $K\beta$ under linear model, the above become

$$\text{Cov}[\text{BLUE}(K\beta)] = A,$$

$$\text{Cov}[\text{BLUE}(K\beta)] \succeq A \ (\succ A, \prec A, \preceq A).$$
Although the equalities and inequalities are easy to understand, \(\text{Cov}[\text{BLUE}(K\beta)] \) in fact involves some complicated matrix operations of the given matrices and their generalized inverses.

From stat point of view, the above are a really work in stat of describing properties of estimations.

From math point of view, the above are a really work in math of solving matrix equations/matrix inequalities for a given matrix \(A \).

So the work will have contributions in both stat and math sides.
Although the equalities and inequalities are easy to understand, \(\text{Cov}[\text{BLUE}(K\beta)] \) in fact involves some complicated matrix operations of the given matrices and their generalized inverses.

From stat point of view, the above are a really work in stat of describing properties of estimations.

From math point of view, the above are a really work in math of solving matrix equations/matrix inequalities for a given matrix \(A \).

So the work will have contributions in both stat and math sides.

A useful method for establishing matrix equalities/inequalities in matrix theory was sufficiently developed, which is based on the following lemma on ranks/inertias of matrices.
Lemma

Let \(A \in \mathbb{R}^{m \times n} \), or \(A = A' \in \mathbb{R}^{m \times m} \). Then by definition the following hold.

(a) \(A = 0 \) iff \(\text{rank}(A) = 0 \).
(b) \(A \) is nonsingular iff \(\text{rank}(A) = m \).
(c) \(A \succ 0 \) iff \(i_+(A) = m \).
(d) \(A \prec 0 \) iff \(i_-(A) = m \).
(e) \(A \succeq 0 \) iff \(i_-(A) = 0 \).
(f) \(A \succeq 0 \preceq 0 \) iff \(i_+(A) = 0 \).
Lemma

Let \(A, B \in \mathbb{R}^{m \times n}, A = A', B = B' \in \mathbb{R}^{m \times m} \). Then the following hold.

(a) \(A = B \) iff \(r(A - B) = 0 \).
(b) \(A - B \) is nonsingular iff \(r(A - B) = m \).
(c) \(A \succ B \) (\(A \prec B \)) iff \(i_+(A - B) = m \) (\(i_-(A - B) = m \)).
(d) \(A \succeq B \) (\(A \preceq B \)) iff \(i_-(A - B) = 0 \) (\(i_+(A - B) = 0 \)).
This lemma implies that

If some formulas are established for calculating ranks and inertias of covariance matrices of estimations under linear models, we can utilize them to derive equalities and inequalities of the covariance matrices, and to compare estimations under regression models.

Motivated by this lemma, a group of explicit formulas for calculating the rank and inertia for the difference

\[r\{A - \text{Cov}[\text{BLUE}(K\beta)]\}, \]
\[i_{\pm}\{A - \text{Cov}[\text{BLUE}(K\beta)]\} \]

can luckily be established.
As consequences of these formulas, necessary and sufficient conditions can be established for the previous equalities and inequalities to hold, respectively.
As consequences of these formulas, necessary and sufficient conditions can be established for the previous equalities and inequalities to hold, respectively.

Various applications of the equalities/inequalities for the different choices of the two matrices K and A.

Also recall that the residual vector with respect to BLUE ($X\beta$) is

$$e = y - \text{BLUE}(X\beta)$$

Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model.
As consequences of these formulas, necessary and sufficient conditions can be established for the previous equalities and inequalities to hold, respectively.

Various applications of the equalities/inequalities for the different choices of the two matrices K and A.

Also recall that the residual vector with respect to $\text{BLUE}(X\beta)$ is

$$e = y - \text{BLUE}(X\beta),$$

formulas can be established for calculating

$$i_{\pm}[A - \text{Cov}(e)],$$

and identifying conditions for

$$\text{Cov}(e) = A \ (\succ A \succ A, \prec A, \preceq A)$$

to hold can be derived.
The following are some known results on ranks/inertias of matrices (Marsaglia & Styan 1974).
The following are some known results on ranks/inertias of matrices (Marsaglia & Styan 1974).

Lemma

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times k}$, and $C \in \mathbb{R}^{l \times n}$. Then

\[
 r[A, B] = r(A) + r(E_A B) = r(B) + r(E_B A),
\]

\[
 r\begin{bmatrix} A \\ C \end{bmatrix} = r(A) + r(CF_A) = r(C) + r(AF_C),
\]

\[
 r\begin{bmatrix} A & B \\ C & 0 \end{bmatrix} = r(B) + r(C) + r(E_B AF_C).
\]
Lemma

Let \(A = A' \in \mathbb{R}^{m \times m} \), \(B = B' \in \mathbb{R}^{n \times n} \), \(Q \in \mathbb{R}^{m \times n} \), and assume that \(P \in \mathbb{R}^{m \times m} \) is nonsingular. Then

\[
\begin{align*}
 i_{\pm}(PAP') &= i_{\pm}(A), \\
 i_{\pm}(A^+) &= i_{\pm}(A), \quad i_{\pm}(-A) = i_{\mp}(A), \\
 i_{\pm} &\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = i_{\pm}(A) + i_{\pm}(B), \\
 i_{+} &\begin{bmatrix} 0 & Q \\ Q' & 0 \end{bmatrix} = i_{-} &\begin{bmatrix} 0 & Q \\ Q' & 0 \end{bmatrix} = r(Q).
\end{align*}
\]
Lemma

(Tian 2010) Let $A = A' \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times n}$, and $D = D' \in \mathbb{R}^{n \times n}$. Then

$$i_\pm \begin{bmatrix} A & B \\ B' & 0 \end{bmatrix} = r(B) + i_\pm (E_B A E_B),$$

$$i_\pm \begin{bmatrix} A & B \\ B' & D \end{bmatrix} = i_\pm (A) + i_\pm \begin{bmatrix} 0 & E_A B \\ B' E_A & D - B' A + B \end{bmatrix}.$$

If $A \succeq 0$, then

$$i_+ \begin{bmatrix} A & B \\ B' & 0 \end{bmatrix} = r[A, B], \quad i_- \begin{bmatrix} A & B \\ B' & 0 \end{bmatrix} = r(B).$$
Lemma

(Tian 2010) Let $A = A' \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{q \times n}$, $D = D' \in \mathbb{R}^{n \times n}$ and $P \in \mathbb{R}^{q \times m}$ with $\mathcal{R}(A) \subseteq \mathcal{R}(P')$, and $\mathcal{R}(B) \subseteq \mathcal{R}(P)$. Also let

$$M = \begin{bmatrix}
-A & P' & 0 \\
P & 0 & B \\
0 & B' & D
\end{bmatrix}.$$

Then

$$i_\pm [D - B'(P')^+AP^+B] = i_\pm (M) - r(P).$$
Lemma

(Tian 2010) Let $A = A' \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{q \times n}$, $D = D' \in \mathbb{R}^{n \times n}$ and $P \in \mathbb{R}^{q \times m}$ with $\mathcal{R}(A) \subseteq \mathcal{R}(P')$, and $\mathcal{R}(B) \subseteq \mathcal{R}(P)$. Also let

$$M = \begin{bmatrix} -A & P' & 0 \\ P & 0 & B \\ 0 & B' & D \end{bmatrix}.$$

Then

$$i_\pm[D - B'(P')^+AP^+B] = i_\pm(M) - r(P).$$

Hence,

$$B'(P')^+AP^+B \succcurlyeq D \iff i_+(M) = r(P),$$

$$B'(P')^+AP^+B \preccurlyeq D \iff i_-(M) = r(P),$$

$$B'(P')^+AP^+B = D \iff r(M) = 2r(P),$$

$$B'(P')^+AP^+B = D \iff r(M) = 2r(P).$$
The following result was originated from Drygas (1970) and Rao (1973).

Lemma

\[\mathbf{L}_0 \mathbf{y} = \text{BLUE}(\mathbf{K}\mathbf{\beta}) \iff \mathbf{L}_0[\mathbf{X}, \mathbf{\Sigma}\mathbf{E}_\mathbf{X}] = [\mathbf{K}, \mathbf{0}]. \]

This equation is always consistent, that is,

\[[\mathbf{K}, \mathbf{0}][\mathbf{X}, \mathbf{\Sigma}\mathbf{E}_\mathbf{X}]^+ [\mathbf{X}, \mathbf{\Sigma}\mathbf{E}_\mathbf{X}] = [\mathbf{K}, \mathbf{0}], \]

and its general solution, denoted by \(\mathbf{P}_{\mathbf{K};\mathbf{X};\mathbf{\Sigma}} \), can be written in the following parametric form

\[\mathbf{L}_0 = \mathbf{P}_{\mathbf{K};\mathbf{X};\mathbf{\Sigma}} = [\mathbf{K}, \mathbf{0}][\mathbf{X}, \mathbf{\Sigma}\mathbf{E}_\mathbf{X}]^+ + \mathbf{U}(\mathbf{I}_n - [\mathbf{X}, \mathbf{\Sigma}][\mathbf{X}, \mathbf{\Sigma}]^+), \]

where \(\mathbf{U} \in \mathbb{R}^{k \times n} \) is arbitrary.
Theorem

Let

\[M = \begin{bmatrix} \Sigma & 0 & X \\ 0 & -A & K \\ X' & K' & 0 \end{bmatrix}. \]

Then the following three formulas hold

\[i_+ \{ A - \text{Cov}[\text{BLUE}(K\beta)] \} = i_- (M) - r(X), \]
\[i_- \{ A - \text{Cov}[\text{BLUE}(K\beta)] \} = i_+ (M) - r[X, \Sigma], \]
\[r \{ A - \text{Cov}[\text{BLUE}(K\beta)] \} = r(M) - r[X, \Sigma] - r(X). \]
Theorem

In consequence, the following hold.

(a) \(\text{Cov}[\text{BLUE}(K\beta)] \succ A \iff i_+(M) = r[X, \Sigma] + k. \)
(b) \(\text{Cov}[\text{BLUE}(K\beta)] \prec A \iff i_-(M) = r(X) + k. \)
(c) \(\text{Cov}[\text{BLUE}(K\beta)] \succeq A \iff i_-(M) = r(X). \)
(d) \(\text{Cov}[\text{BLUE}(K\beta)] \preceq A \iff i_+(M) = r[X, \Sigma]. \)
(e) \(\text{Cov}[\text{BLUE}(K\beta)] = A \iff r(M) = r[X, \Sigma] + r(X). \)
Proof.

Note that

$$\text{Cov}[\text{BLUE}(K\beta)] = [K, 0][X, \Sigma E_X]^{+}\Sigma[X, \Sigma E_X]'^[K, 0]'\cdot$$

Hence,

$$A - \text{Cov}[\text{BLUE}(K\beta)]$$

$$= A - [K, 0][X, \Sigma E_X]^{+}\Sigma([X, \Sigma E_X]')^[K, 0]'\cdot$$

and

$$i\{A - \text{Cov}[\text{BLUE}(K\beta)]\}$$

$$= i\{A - [K, 0][X, \Sigma E_X]^{+}\Sigma([X, \Sigma E_X]')^[K, 0]'\cdot\}.$$

Y. Tian

Formulas, equalities and inequalities for covariance matrices of estimations under a general linear model.
Applying previous formulas and simplifying will finally yields

\[i^+ \{ A - \text{Cov}[\text{BLUE}(K\beta)] \} = i^- (M) - r(X), \]
\[i^- \{ A - \text{Cov}[\text{BLUE}(K\beta)] \} = i^+ (M) - r[X, \Sigma]. \]

Adding the two equalities yields the third rank formulas. Setting the equalities equal to zero yields (a)–(e).
Several special cases, as examples, are presented below for different choices of K and A in the formulas (home assignments!).

Theorem

Let

$$M = \begin{bmatrix}
\Sigma & 0 & X \\
0 & -A & X \\
X' & X' & 0
\end{bmatrix}.$$

Then the following inertia and rank formulas hold

\[
\begin{align*}
 i_+\{ A - \text{Cov}[\text{BLUE}(X\beta)] \} &= i_- (M) - r(X), \\
 i_-\{ A - \text{Cov}[\text{BLUE}(X\beta)] \} &= i_+ (M) - r[X, \Sigma].
\end{align*}
\]
Theorem

If β is estimable, then

\[
\begin{align*}
i_+ \{ A - \text{Cov}[\text{BLUE}(\beta)] \} &= i_- (\Sigma - XAX'), \\
i_- \{ A - \text{Cov}[\text{BLUE}(\beta)] \} &= p + i_+ (\Sigma - XAX') - r[X, \Sigma].
\end{align*}
\]

In consequence, the following hold.

(a) $\text{Cov}[\text{BLUE}(X\beta)] \succ A \iff i_+(M) = r[X, \Sigma] + n$.
(b) $\text{Cov}[\text{BLUE}(X\beta)] \prec A \iff i_-(M) = r(X) + n$.
(c) $\text{Cov}[\text{BLUE}(X\beta)] \succeq A \iff i_-(M) = r(X)$.
(d) $\text{Cov}[\text{BLUE}(X\beta)] \preceq A \iff i_+(M) = r[X, \Sigma]$.
Assume that τ^2 is positive scalar. Then

$$i_+\{ \tau^2 I_k - \text{Cov}[\text{BLUE}(K\beta)] \} = i_- \left[\begin{array}{cc} \Sigma & \tau X \\ \tau X' & K'K \end{array} \right] - r(X) + k,$$

$$i_-\{ \tau^2 I_k - \text{Cov}[\text{BLUE}(K\beta)] \} = i_+ \left[\begin{array}{cc} \Sigma & \tau X \\ \tau X' & K'K \end{array} \right] - r[X, \Sigma].$$

If β is estimable, then

$$i_+\{ I_p - \text{Cov}[\text{BLUE}(\beta)] \} = i_- (\Sigma - XX'),$$

$$i_-\{ I_p - \text{Cov}[\text{BLUE}(\beta)] \} = p + i_+(\Sigma - XX') - r[X, \Sigma].$$
Corollary

Let

\[
M = \begin{bmatrix}
\Sigma & 0 & X \\
0 & -A\Sigma A' & K \\
X' & K' & 0 \\
\end{bmatrix}, \quad N = \begin{bmatrix}
\Sigma & 0 & X \\
0 & -A\Sigma A' & X \\
X' & X' & 0 \\
\end{bmatrix}.
\]

Then,

\[
i_+ \{ \text{Cov}(Ay) - \text{Cov}[\text{BLUE}(K\beta)] \} = i_-(M) - r(X),
\]

\[
i_- \{ \text{Cov}(Ay) - \text{Cov}[\text{BLUE}(K\beta)] \} = i_+(M) - r[X, \Sigma].
\]
Corollary

\[
 i_+ \{ \text{Cov}(y) - \text{Cov}[\text{BLUE}(X\beta)] \} \\
= r \{ \text{Cov}(y) - \text{Cov}[\text{BLUE}(X\beta)] \} = r[X, \Sigma] - r(X).
\]

If \(\beta \) is estimable, then

\[
 i_+ \{ \text{Cov}(Ay) - \text{Cov}[\text{BLUE}(\beta)] \} = i_-(\Sigma - XA\Sigma A'X') , \\
i_- \{ \text{Cov}(Ay) - \text{Cov}[\text{BLUE}(\beta)] \} = p + i_+(\Sigma - XA\Sigma A'X') \\
- r[X, \Sigma].
\]

If \(E(Ay) = K\beta \), then

\[
 i_+ \{ \text{Cov}(Ay) - \text{Cov}[\text{BLUE}(K\beta)] \} \\
= r \{ \text{Cov}(Ay) - \text{Cov}[\text{BLUE}(K\beta)] \} = r[\Sigma A', X] - r(X).
\]
Inertia formulas for OLSEs’ covariance matrices

As is well known, the ordinary least square estimator (OLSE) of an estimable $K\beta$ ($X\beta$) under (1) can be written as

$$\text{OLSE}(K\beta) = KX^+y, \quad \text{OLSE}(X\beta) = XX^+y = Pxy.$$

In this case,

$$E[\text{OLSE}(K\beta)] = K\beta, \quad \text{Cov}[\text{OLSE}(K\beta)] = KX^+\Sigma(KX^+)',$$

$$E[\text{OLSE}(X\beta)] = X\beta, \quad \text{Cov}[\text{OLSE}(X\beta)] = P_x\Sigma P_x.$$

It is obvious that if $\Sigma = \sigma^2I_n$, then

$$\text{BLUE}(K\beta) = \text{OLSE}(K\beta) = KX^+y.$$

Hence, we also have the following.
Theorem

Assume that $\Sigma = \sigma^2 I_n$, $K\beta$ is estimable. Also let

$$M = \begin{bmatrix} A & K \\ K' & X'X \end{bmatrix}, \quad N = \begin{bmatrix} A & X \\ X' & X'X \end{bmatrix}.$$

Then the following inertia and rank formulas hold

$$i_+ \{ A - \text{Cov}[\text{OLSE}(K\beta)] \} = i_+(M) - r(X),$$
$$i_- \{ A - \text{Cov}[\text{OLSE}(K\beta)] \} = i_-(M).$$

If $A = A' \in \mathbb{R}^{n \times n}$, then

$$i_+ \{ A - \text{Cov}[\text{OLSE}(X\beta)] \} = i_+(N) - r(X),$$
$$i_- \{ A - \text{Cov}[\text{OLSE}(X\beta)] \} = i_-(N).$$
The difference of $\text{OLSE}(K\beta)$ and $\text{BLUE}(K\beta)$ is

$$\text{OLSE}(K\beta) - \text{BLUE}(K\beta) = (KX^+ - P_{K;X;\Sigma})y;$$
The difference of $\text{OLSE}(K\beta)$ and $\text{BLUE}(K\beta)$ is

$$\text{OLSE}(K\beta) - \text{BLUE}(K\beta) = (KX^+ - P_{K;X;\Sigma})y;$$

the difference of the covariance matrices of $\text{OLSE}(K\beta)$ and $\text{BLUE}(K\beta)$ is

$$\text{Cov}[\text{OLSE}(K\beta)] - \text{Cov}[\text{BLUE}(K\beta)] = KX^+\Sigma(KX^+)' - P_{K;X;\Sigma}\Sigma P_{K;X;\Sigma}';$$
The difference of $\text{OLSE}(\mathbf{K}\beta)$ and $\text{BLUE}(\mathbf{K}\beta)$ is

$$\text{OLSE}(\mathbf{K}\beta) - \text{BLUE}(\mathbf{K}\beta) = (\mathbf{KX}^+ - \mathbf{P}_{\mathbf{K};\mathbf{x};\Sigma})\mathbf{y};$$

the difference of the covariance matrices of $\text{OLSE}(\mathbf{K}\beta)$ and $\text{BLUE}(\mathbf{K}\beta)$ is

$$\text{Cov}[\text{OLSE}(\mathbf{K}\beta)] - \text{Cov}[\text{BLUE}(\mathbf{K}\beta)] = \mathbf{KX}^+\Sigma(\mathbf{KX}^+)' - \mathbf{P}_{\mathbf{K};\mathbf{x};\Sigma}\Sigma\mathbf{P}'_{\mathbf{K};\mathbf{x};\Sigma};$$

and the covariance matrix of the difference of $\text{OLSE}(\mathbf{K}\beta)$ and $\text{BLUE}(\mathbf{K}\beta)$ is

$$\text{Cov}[\text{OLSE}(\mathbf{K}\beta) - \text{BLUE}(\mathbf{K}\beta)] = (\mathbf{KX}^+ - \mathbf{P}_{\mathbf{K};\mathbf{x};\Sigma})\Sigma(\mathbf{KX}^+ - \mathbf{P}_{\mathbf{K};\mathbf{x};\Sigma})'.$$
Theorem

\[i_+ \{ \text{Cov}[\text{OLSE}(K\beta)] - \text{Cov}[\text{BLUE}(K\beta)] \} \]
\[= r\{ \text{Cov}[\text{OLSE}(K\beta)] - \text{Cov}[\text{BLUE}(K\beta)] \} \]
\[= r [\Sigma X, X] - 2r(X), \]

If \(\beta \) is estimable, then

\[i_+ \{ \text{Cov}[\text{OLSE}(X\beta)] - \text{Cov}[\text{BLUE}(X\beta)] \} \]
\[= r\{ \text{Cov}[\text{OLSE}(X\beta)] - \text{Cov}[\text{BLUE}(X\beta)] \} \]
\[= r[\Sigma X, X] - r(X) < n. \]

Where \(\Sigma \) is the covariance matrix, \(X \) is the design matrix, and \(p \) is the number of parameters.
Note that two residual vectors with respect to $\text{OLSE}(X\beta)$ and $\text{BLUE}(X\beta)$ are given by

$$\hat{e} = y - \text{OLSE}(X\beta) = (I_n - P_X)y = E_Xy,$$
$$\tilde{e} = y - \text{BLUE}(X\beta) = (I_n - P_{X;\Sigma})y.$$

Hence, the covariance matrices of \hat{e} and \tilde{e} are given by

$$\text{Cov}(\hat{e}) = E(\hat{e}\hat{e}') = E_X\Sigma E_X,$$
$$\text{Cov}(\tilde{e}) = E(\tilde{e}\tilde{e}') = \Sigma - \text{Cov}[\text{BLUE}(X\beta)].$$
Theorem

Let

\[
M = \begin{bmatrix}
\Sigma & 0 & X \\
0 & A - \Sigma & X \\
X' & X' & 0
\end{bmatrix}
\]

Then

\[
i_+ [A - \text{Cov}(\tilde{e})] = i_+(M) - r[X, \Sigma],
\]

\[
i_- [A - \text{Cov}(\tilde{e})] = i_-(M) - r(X).
\]
In particular,

\[
\begin{align*}
i_+ [I_n - \text{Cov}(\tilde{e})] &= i_+ \begin{bmatrix} \Sigma - \Sigma^2 & X \\ X' & 0 \end{bmatrix} - r[X, \Sigma] + n, \\
i_- [I_n - \text{Cov}(\tilde{e})] &= i_- \begin{bmatrix} \Sigma - \Sigma^2 & X \\ X' & 0 \end{bmatrix} - r(X), \\
i_+ [\Sigma - \text{Cov}(\tilde{e})] &= r[\Sigma - \text{Cov}(\tilde{e})] = r(\Sigma) + r(X) - r[X, \Sigma], \\
i_+ [\text{Cov}(\tilde{e})] &= r[\text{Cov}(\tilde{e})] = r[X, \Sigma] - r(X).
\end{align*}
\]
Corollary

\[i_+ \left[\text{Cov}(\hat{e}) - \text{Cov}(\tilde{e}) \right] = i_- \left[\text{Cov}(\hat{e}) - \text{Cov}(\tilde{e}) \right] = r[X, \Sigma X] - r(X). \]

Hence, the following statements are equivalent:

(a) \(\text{Cov}(\hat{e}) \succcurlyeq \text{Cov}(\tilde{e}) \).
(b) \(\text{Cov}(\hat{e}) \preccurlyeq \text{Cov}(\tilde{e}) \).
(c) \(\text{Cov}(\hat{e}) = \text{Cov}(\tilde{e}) \).
(d) \(r[X, \Sigma X] = r(X) \).
(e) \(\mathcal{R}(\Sigma X) \subseteq \mathcal{R}(X) \).
(f) \(P_X \Sigma = \Sigma P_X \).
Assume that two transformed models of the original model are given as follows

\[M_1 = \{ Ay, AX\beta, A\Sigma A' \}, \]
\[M_2 = \{ By, BX\beta, B\Sigma B' \}, \]

where \(A \in \mathbb{R}^{m_1 \times n} \) and \(B \in \mathbb{R}^{m_2 \times n} \) are two given matrices of arbitrary rank.
Theorem

Let

\[M = \begin{bmatrix}
A\Sigma A' & 0 & AX & 0 & 0 \\
0 & -B\Sigma B' & 0 & BX & 0 \\
X'A' & 0 & 0 & 0 & K' \\
0 & X'B' & 0 & 0 & K' \\
0 & 0 & K & K & 0
\end{bmatrix}, \]

\[N = \begin{bmatrix}
A\Sigma A' & 0 & AX \\
0 & -B\Sigma B' & BX \\
X'A' & X'B' & 0
\end{bmatrix}. \]

Then

\[i_+ \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(K\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(K\beta)] \} = i_+(M) - r[A X, A \Sigma] - r(X), \]

\[i_- \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(K\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(K\beta)] \} = i_-(M) - r[BX, B\Sigma] - r(X). \]
In particular, if $X\beta$ is estimable, then

$$i_+ \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(X\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(X\beta)] \} = i_+(N) - r[AX, A\Sigma],$$

$$i_- \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(X\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(X\beta)] \} = i_-(N) - r[BX, B\Sigma].$$

If β is estimable, then

$$i_+ \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\beta)] \} = i_+(N) - r[AX, A\Sigma],$$

$$i_- \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\beta)] \} = i_-(N) - r[BX, B\Sigma].$$
Partition an original model as

\[\mathcal{M} = \left\{ \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \beta, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma'_{12} & \Sigma_{22} \end{bmatrix} \right\}, \]

where \(y_1 \in \mathbb{R}^{n_1 \times 1}, y_2 \in \mathbb{R}^{n_2 \times 1}, X_1 \in \mathbb{R}^{n_1 \times p}, X_2 \in \mathbb{R}^{n_2 \times p}, \)
\(\Sigma_{11} \in \mathbb{R}^{n_1 \times n_1}, \Sigma_{12} \in \mathbb{R}^{n_1 \times n_2}, \Sigma_{22} \in \mathbb{R}^{n_2 \times n_2}. \) Then two sum-sample models are

\[\mathcal{M}_1 = \{ y_1, X_1 \beta, \Sigma_{11} \} = \{ Ay, AX \beta, A\Sigma A' \}, \quad A = [I_{n_1}, 0], \]
\[\mathcal{M}_2 = \{ y_2, X_2 \beta, \Sigma_{22} \} = \{ By, BX \beta, B\Sigma B' \}, \quad B = [0, I_{n_2}]. \]
Theorem

Let

\[M = \begin{bmatrix} \Sigma_{11} & 0 & \mathbf{X}_1 & 0 & 0 \\ 0 & -\Sigma_{22} & 0 & \mathbf{X}_2 & 0 \\ \mathbf{X}_1' & 0 & 0 & 0 & \mathbf{K}' \\ 0 & \mathbf{X}_2' & 0 & 0 & \mathbf{K}' \\ 0 & 0 & \mathbf{K} & \mathbf{K} & 0 \end{bmatrix}, \]

\[N = \begin{bmatrix} \Sigma_{11} & 0 & \mathbf{X}_1 \\ 0 & -\Sigma_{22} & \mathbf{X}_2 \\ \mathbf{X}_1' & \mathbf{X}_2' & 0 \end{bmatrix}. \]

Then

\[i_+ \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\mathbf{K}\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\mathbf{K}\beta)] \} = i_+(M) - r[\mathbf{X}_1, \Sigma_{11}] - r(\mathbf{X}_2), \]

\[i_- \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\mathbf{K}\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\mathbf{K}\beta)] \} = i_-(M) - r[\mathbf{X}_2, \Sigma_{22}] - r(\mathbf{X}_1). \]
In particular, if $\mathbf{X}\beta$ is estimable, then

\[i_+ \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\mathbf{X}\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\mathbf{X}\beta)] \} = i_+(\mathbf{N}) - r[\mathbf{X}_1, \Sigma_{11}], \]

\[i_- \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\mathbf{X}\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\mathbf{X}\beta)] \} = i_-(\mathbf{N}) - r[\mathbf{X}_2, \Sigma_{22}], \]

If β is estimable, then

\[i_+ \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\beta)] \} = i_+(\mathbf{N}) - r[\mathbf{X}_1, \Sigma_{11}], \]

\[i_- \{ \text{Cov}[\text{BLUE}_{\mathcal{M}_1}(\beta)] - \text{Cov}[\text{BLUE}_{\mathcal{M}_2}(\beta)] \} = i_-(\mathbf{N}) - r[\mathbf{X}_2, \Sigma_{22}]. \]
Possible equalities/inequalities for estimations can be formulated in many different forms. For instance, for the covariance matrices of BLUEs under original and its two sub-sample models, reasonable equalities/inequalities

$$\text{Cov}[\text{BLUE}_M(K\beta)] = (\succ, \succeq, \prec, \preceq) \frac{1}{2} \text{Cov}[\text{BLUE}_{M_1}(K\beta)] + \frac{1}{2} \text{Cov}[\text{BLUE}_{M_2}(K\beta)]$$

can be proposed, while necessary and sufficient conditions for them to hold can be established by a similarly approach demonstrated previously.

All these results can be used to reveal many profound properties hidden behind estimations.
A general conclusion

For any two symmetric matrix expressions of the same size

\[f(A_1, A_2, \ldots,) \text{ and } g(B_1, B_2, \ldots,), \]

it is always possible to establish certain expansion formulas for calculating the rank/inertia of

\[f(A_1, A_2, \ldots,) - g(B_1, B_2, \ldots,), \]

and to give identifying conditions for

\[f(A_1, A_2, \ldots,) = (\succ, \succsim, \prec, \precsim) g(B_1, B_2, \ldots,) \]

to hold.

Tian, Y., (2012a). Solving optimization problems on ranks and
Thank you for your attention!