LinStat 2014

New results on the Choquet integral based distributions

Vicenç Torra
IIIA, Artificial Intelligence Research Institute
Bellaterra, Catalonia, Spain

August, 2014

From November: University of Skövde, Sweden
Overview

Basics and objectives:

- Distribution based on the Choquet integral (for non-additive measures)

Motivation:

- Theory: Mathematical properties
- Methodology: different ways to express interactions
- Application: statistical disclosure control (data privacy)
Outline

1. Preliminaries

2. Choquet integral based distribution

3. Choquet-Mahalanobis based distribution

4. Summary
Preliminaries
Non-additive measures and the Choquet integral
Definitions: measures

Additive measures.

- (X, \mathcal{A}) a measurable space; then, a set function μ is an additive measure if it satisfies
 (i) $\mu(A) \geq 0$ for all $A \in \mathcal{A}$,
 (ii) $\mu(X) \leq \infty$
 (iii) for every countable sequence A_i ($i \geq 1$) of \mathcal{A} that is pairwise disjoint (i.e., $A_i \cap A_j = \emptyset$ when $i \neq j$)

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$
Definitions: measures

Additive measures.

- (X, \mathcal{A}) a measurable space; then, a set function μ is an additive measure if it satisfies

 (i) $\mu(A) \geq 0$ for all $A \in \mathcal{A}$,

 (ii) $\mu(X) \leq \infty$

 (iii) for every countable sequence $A_i (i \geq 1)$ of \mathcal{A} that is pairwise disjoint (i.e., $A_i \cap A_j = \emptyset$ when $i \neq j$)

\[
\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)
\]

Finite case: $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint A, B
Definitions: measures

Additive measures.

- \((X, \mathcal{A})\) a measurable space; then, a set function \(\mu\) is an additive measure if it satisfies

(i) \(\mu(A) \geq 0\) for all \(A \in \mathcal{A}\),

(ii) \(\mu(X) \leq \infty\)

(iii) for every countable sequence \(A_i (i \geq 1)\) of \(\mathcal{A}\) that is pairwise disjoint (i.e., \(A_i \cap A_j = \emptyset\) when \(i \neq j\))

\[
\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)
\]

Finite case: \(\mu(A \cup B) = \mu(A) + \mu(B)\) for disjoint \(A, B\)

- Probability: \(\mu(X) = 1\)
Non-additive measures.

- \((X, \mathcal{A})\) a measurable space, a non-additive measure \(\mu\) on \((X, \mathcal{A})\) is a set function \(\mu : \mathcal{A} \rightarrow [0, 1]\) satisfying the following axioms:
 1. \(\mu(\emptyset) = 0, \ \mu(X) = 1\) (boundary conditions)
 2. \(A \subseteq B\) implies \(\mu(A) \leq \mu(B)\) (monotonicity)
Non-additive measures. Examples. Distorted Lebesgue

- \(m : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) a continuous and increasing function such that \(m(0) = 0 \); \(\lambda \) be the Lebesgue measure.

The following set function \(\mu_m \) is a non-additive measure:

\[
\mu_m(A) = m(\lambda(A))
\]
Definitions: measures

Non-additive measures. Examples. Distorted Lebesgue

- \(m : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) a continuous and increasing function such that \(m(0) = 0; \lambda \) be the Lebesgue measure.

The following set function \(\mu_m \) is a non-additive measure:

\[
\mu_m(A) = m(\lambda(A))
\]

- If \(m(x) = x^2 \), then \(\mu_m(A) = (\lambda(A))^2 \)
- If \(m(x) = x^p \), then \(\mu_m(A) = (\lambda(A))^p \)
Non-additive measures. Examples. Distorted probabilities

- \(m : \mathbb{R}^+ \to \mathbb{R}^+ \) a continuous and increasing function such that \(m(0) = 0 \); \(P \) be a probability.

The following set function \(\mu_m \) is a non-additive measure:

\[
\mu_{m,P}(A) = m(P(A))
\]

(2)
Definitions: measures

Non-additive measures. Examples. Distorted probabilities

- \(m : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) a continuous and increasing function such that \(m(0) = 0 \); \(P \) be a probability.

The following set function \(\mu_m \) is a non-additive measure:

\[
\mu_{m,P}(A) = m(P(A))
\]

Applications.

- To represent interactions
Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

\[
(C) \quad \int g \, d\mu := \int_0^\infty \mu_g(r) \, dr.
\]

(3)
Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_g(r) := \mu(\{x|g(x) > r\})$:

\[
(C) \int g d\mu := \int_0^\infty \mu_g(r) dr. \tag{3}
\]

- When the measure is additive, this is the Lebesgue integral
Definitions: integrals

Choquet integral (Choquet, 1954):

- μ a non-additive measure, g a measurable function. The Choquet integral of g w.r.t. μ, where $\mu_g(r) := \mu(\{x | g(x) > r\})$:

$$ (C) \int g d\mu := \int_{0}^{\infty} \mu_g(r) dr. \quad (3) $$

- When the measure is additive, this is the Lebesgue integral
Definition: Choquet integral. Discrete version

- μ a non-additive measure, f a measurable function. The Choquet integral of f w.r.t. μ,

\[
(C) \int f \, d\mu = \sum_{i=1}^{N} [f(x_{s(i)}) - f(x_{s(i-1)})] \mu(A_{s(i)}),
\]

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0 \leq f(x_{s(1)}) \leq \cdots \leq f(x_{s(N)}) \leq 1$, and where $f(x_{s(0)}) = 0$ and $A_{s(i)} = \{x_{s(i)}, \ldots, x_{s(N)}\}$.

Vicenç Torra; Choquet integral based distributions

LinStat 2014 9 / 27
Definitions: measures

Choquet integral: Example:

- $m : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ a continuous and increasing function s.t. $m(0) = 0$, $m(1) = 1$; P a probability distribution.
- μ_m, a non-additive measure:

\[
\mu_m(A) = m(P(A))
\] \hspace{1cm} (4)

- $CI_{\mu_m}(f)$

 - (a) \rightarrow max, (b) \rightarrow median, (c) \rightarrow min, (d) \rightarrow mean

\[\begin{align*}
\text{(a)} & \quad \text{(b)} & \quad \text{(c)} & \quad \text{(d)}
\end{align*}\]
Choquet integral based distribution
Choquet integral based distribution: Definition

Definition:

- $Y = \{Y_1, \ldots, Y_n\}$ random variables; $\mu : 2^Y \to [0, 1]$ a non-additive measure and \mathbf{m} a vector in \mathbb{R}^n.

- The exponential family of Choquet integral based class-conditional probability-density functions is defined by:

$$PC_{\mathbf{m}, \mu}(\mathbf{x}) = \frac{1}{K} e^{-\frac{1}{2}CI_{\mu}((\mathbf{x}-\mathbf{m}) \circ (\mathbf{x}-\mathbf{m}))}$$

where K is a constant that is defined so that the function is a probability, and where $\mathbf{v} \circ \mathbf{w}$ denotes the Hadamard or Schur (elementwise) product of vectors \mathbf{v} and \mathbf{w} (i.e., $(\mathbf{v} \circ \mathbf{w}) = (v_1 w_1 \ldots v_n w_n)$).

Notation:

- We denote it by $C(\mathbf{m}, \mu)$.

Choquet integral based distribution: Examples

- Shapes (level curves)

(a) $\mu_A(\{x\}) = 0.1$ and $\mu_A(\{y\}) = 0.1$, (b) $\mu_B(\{x\}) = 0.9$ and $\mu_B(\{y\}) = 0.9$, (c) $\mu_C(\{x\}) = 0.2$ and $\mu_C(\{y\}) = 0.8$, and (d) $\mu_D(\{x\}) = 0.4$ and $\mu_D(\{y\}) = 0.9$.
Choquet integral based distribution: Properties

Property:

- The family of distributions \(N(\mathbf{m}, \Sigma) \) in \(\mathbb{R}^n \) with a diagonal matrix \(\Sigma \) of rank \(n \), and the family of distributions \(C(\mathbf{m}, \mu) \) with an additive measure \(\mu \) with all \(\mu(\{x_i\}) \neq 0 \) are equivalent.

\((\mu(X) \) is not necessarily here 1)
Choquet integral based distribution: Properties

Property:

- The family of distributions $N(m, \Sigma)$ in \mathbb{R}^n with a diagonal matrix Σ of rank n, and the family of distributions $C(m, \mu)$ with an additive measure μ with all $\mu(\{x_i\}) \neq 0$ are equivalent.

($\mu(X)$ is not necessarily here 1)

Corollary:

- The distribution $N(0, I)$ corresponds to $C(0, \mu^1)$ where μ^1 is the additive measure defined as $\mu^1(A) = |A|$ for all $A \subseteq X$.
Choquet integral based distribution: \(N \) vs. \(C \)

Properties:

- In general, the two families of distributions \(N(\mathbf{m}, \Sigma) \) and \(C(\mathbf{m}, \mu) \) are different.
- \(C(\mathbf{m}, \mu) \) always symmetric w.r.t. \(Y_1 \) and \(Y_2 \) axis.

- A generalization of both: Choquet-Mahalanobis based distribution.
 - Mahalanobis: \(\Sigma \) represents some interactions
 - Choquet (measure): \(\mu \) represents some interactions
Choquet-Mahalanobis based distribution
Definition:

- \(Y = \{Y_1, \ldots, Y_n\} \) random variables, \(\mu : 2^Y \rightarrow [0, 1] \) a measure, \(\mathbf{m} \) a vector in \(\mathbb{R}^n \), and \(Q \) a positive-definite matrix.
- The exponential family of Choquet-Mahalanobis integral based class-conditional probability-density functions is defined by:

\[
PCM_{\mathbf{m}, \mu, Q}(x) = \frac{1}{K} e^{-\frac{1}{2} CI_{\mu}(\mathbf{v} \odot \mathbf{w})}
\]

where \(K \) is a constant that is defined so that the function is a probability, where \(LL^T = Q \) is the Cholesky decomposition of the matrix \(Q \), \(\mathbf{v} = (\mathbf{x} - \mathbf{m})^T \mathbf{L} \), \(\mathbf{w} = \mathbf{L}^T (\mathbf{x} - \mathbf{m}) \), and where \(\mathbf{v} \odot \mathbf{w} \) denotes the elementwise product of vectors \(\mathbf{v} \) and \(\mathbf{w} \).

Notation:

- We denote it by \(CMI(\mathbf{m}, \mu, Q) \).
Choquet integral based distribution: Properties

Property:

- The distribution $CMI(m, \mu, Q)$ generalizes the multivariate normal distributions and the Choquet integral based distribution. In addition
 - A $CMI(m, \mu, Q)$ with $\mu = \mu^1$ corresponds to multivariate normal distributions,
 - A $CMI(m, \mu, Q)$ with $Q = \mathbb{I}$ corresponds to a $CI(m, \mu)$.
Choquet integral based distribution: Properties

Graphically:

- Choquet-integral (CI distribution) and Mahalobis distance (multivariate normal distribution) and a generalization
1st Example: Interactions only expressed in terms of a measure.

- No correlation exists between the variables.
- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.0$, $\mu_x = 0.01$, $\mu_y = 0.01$.

![Graphs showing the Choquet integral based distribution examples](image-url)
2nd Example: Interactions only expressed in terms of the covariance matrix.

- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.10$, $\mu_y = 0.90$.
3rd Example: Interactions expressed in both terms: covariance matrix and measure.

- CMI with $\sigma_1 = 1$, $\sigma_2 = 1$, $\rho_{12} = 0.9$, $\mu_x = 0.01$, $\mu_y = 0.01$.
Choquet integral based distribution: Properties

More properties: (comparison with spherical and elliptical distributions)

- In general, neither \(CMI(m, \mu, Q) \) is more general than spherical / elliptical distributions, nor spherical / elliptical distributions are more general than \(CMI(m, \mu, Q) \).

Example:

- For non-additive measures, \(CMI(m, \mu, Q) \) cannot be expressed as spherical or elliptical distributions.
- The following spherical distribution cannot be represented with \(CMI \): Spherical distribution with density

\[
f(r) = \frac{1}{K} e^{-\left(\frac{r-r_0}{\sigma}\right)^2},
\]

where \(r_0 \) is a radius over which the density is maximum, \(\sigma \) is a variance, and \(K \) is the normalization constant.
Choquet integral based distribution: Properties

More properties:

- When Q is not diagonal, we may have

$$\text{Cov}[X_i, X_j] \neq Q(X_i, X_j).$$

Normality test CI-based distribution:

Mardia’s test based on skewness and kurtosis

- Skewness test is passed.
- Almost all distributions (in \mathbb{R}^2) pass kurtosis test in experiments:
 - Choquet-integral distributions with $\mu(\{x\}) = i/10$ and $\mu(\{y\}) = i/10$ for $i = 1, 2, \ldots, 9$.
 - Test only fails in (i) $\mu(\{x\}) = 0.1$ and $\mu(\{y\}) = 0.1$, (ii) $\mu(\{x\}) = 0.2$ and $\mu(\{y\}) = 0.1$.

Summary
Summary:

- Definition of distributions based on the Choquet integral for non-additive measures
- Relationship with multivariate normal and spherical distributions
Thank you