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Large covariance matrices I

The model

I Consider a N × n matrix XN with i.i.d. entries

EXij = 0 , E|Xij |2 = 1 .

I Let RN be a deterministic N ×N nonnegative definite hermitian matrix.

I Consider
YN = R

1/2
N XN .

Matrix YN is a n-sample of N -dimensional vectors:

YN = [Y·1 · · · Y·n] with Y·1 = R
1/2
N X·1 and EY·1Y∗·1 = RN .

I RN often called Population covariance matrix.

Objective

To understand the spectrum of 1
n

YNY∗N

as

N,n→∞ ⇔
N

n
→ c ∈ (0,∞)
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Large covariance matrices II

Remarks

1. The asymptotic regime N,n→∞ and N
n
→ c ∈ (0,∞) corresponds to the case

where the data dimension is of the same order as the number of available
samples.

2. If N fixed and n→∞ (small data, large samples) then

1

n
YNY∗N −→ RN

The spectral measure of a matrix A
.. also called the empirical measure of the eigenvalues

If A is N ×N hermitian with eigenvalues λ1, · · · , λN then its spectral measure is:

LN =
1

N

N∑
i=1

δλi(A) ⇒ LN ([a, b]) =
#{λi(A) ∈ [a, b]}

N

Otherwise stated

LN ([a, b]) is the proportion of eigenvalues of A in [a, b].
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Objectives of this talk

1. to describe the limiting spectral properties of the large covariance matrix

1

n
YnY∗n =

1

n
R

1/2
n XnX∗nR

1/2
n

2. to study a particular class of covariance matrix models: spiked models, for which
one or several eigenvalues are clearly separated from the mass of the other
eigenvalues.

3. to present two applications of these results in statistical signal processing: signal
detection and direction of arrival estimation.
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Spectrum and eigenvectors analysis

The resolvent

I The resolvent of A is Q(z) = (A− zI)−1

I its singularities are exactly eigenvalues of A.

I Problem: if size of A big, then size of Q big as well.

The normalized trace of the resolvent

I Function

gn(z) =
1

N
Trace (A− zI)−1

provides information on the spectrum of A.

I It is the Stieltjes transform of the spectral measure of A (cf. supra)
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Spectrum analysis: The Stieltjes Transform

Given a probability P, its Stieltjes transform is defined by

g(z) =

∫
R

P(dλ)

λ− z
, z ∈ C+ ,

with inverse formula ∫
f dP =

1

π
lim
y↓0
=
∫
R
f(x)g(x+ iy) dx ,

for f bounded continuous.

Properties

1. Convergence in distribution is characterized by pointwise convergence of Stieltjes
transforms:

Pn
D−−−−→

n→∞
P ⇔ ∀z ∈ C+, gn(z) =

∫ Pn(dλ)

λ− z
−−−−→
n→∞

g(z) =

∫ P(dλ)

λ− z

2. Spectral measure:

P =
1

N

N∑
i=1

δλi(A) ⇒ gn(z) =
1

N

N∑
i=1

1

λi(A)− z
=

1

N
Trace (A− zI)−1

The Stieltjes transfom gn is the normalized trace of the resolvent (A− zI)−1
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Wishart Matrices

The model

I We first focus on covariance matrices in the case where RN = σ2IN .

I Hence YN is a N × n matrix with i.i.d. entries EYij = 0 , E|Yij |2 = σ2 .

I Matrix 1
n

YNY∗N is a Wishart matrix.

The standard case N << n

Assume N fixed and n→∞ (small data, large sample). Since

EY·1Y∗·1 = σ2IN ,

L.L.N implies

1

n
YNY∗N =

1

n

n∑
i=1

Y·iY
∗
·i

a.s.−−−−→
n→∞

σ2IN

In particular,

I all the eigenvalues of 1
n

YNY∗N converge to σ2,

I equivalently, the spectral measure of 1
n

YNY∗N converges to δσ2 .
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Marčenko-Pastur theorem

Theorem

I Consider the spectral measure LN :

LN =
1

N

N∑
i=1

δλi
, λi = λi

(
1

n
YNY∗N

)

I Then almost surely (= for almost every realization)

LN −−−−−−→
N,n→∞

PM̌P in distribution as
N

n
−−−−→
n→∞

c ∈ (0,∞)

where PM̌P is Marčenko-Pastur distribution:

PM̌P(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(b− x)(x− a)

2πσ2xc
1[a,b](x) dx

with {
a = σ2(1−

√
c)2

b = σ2(1 +
√
c)2
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Histogram for Wishart matrices

: Marčenko-Pastur’s theorem

Matrix model: Wishart matrix

Consider the spectrum of 1
n

YNY∗N in
the regime where

N,n→∞ and
N

n
→ c ∈ (0,∞)

Plot the histogram of its eigenvalues.

Marčenko-Pastur’s theorem (1967)

”The histogram of a Large Covariance Matrix converges to
Marčenko-Pastur distribution with given parameter (here 0.7)”

13
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Figure : Spectrum’s histogram - N
n = 0.7
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Marčenko-Pastur distribution with given parameter (here 0.7)”

13



Histogram for Wishart matrices: Marčenko-Pastur’s theorem
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Elements of proof

1. Convergence of the Stieltjes transform.

Since

LN =
1

N

N∑
i=1

δλi
−−−−−−→
N,n→∞

PM̌P ⇐⇒ gn(z) −−−−−−→
N,n→∞

ST
(
PM̌P

)
we prove the convergence of gn.

2. After algebraic manipulations and probabilistic arguments, we prove that

gn(z) ≈
1

σ2(1− cn)− z − zσ2cngn(z)

3. Necessarily,
gn −−−−−−→

N,n→∞
gM̌P

which satisfies the fixed point equation:

gM̌P(z) =
1

σ2(1− c)− z − zσ2cgM̌P(z)

4. Solving explicitely the previous equation, we identify

PM̌P = (Stieltjes Transform)−1(gM̌P) .
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Theorem
Recall the notations

Yn = R
1/2
N XN and gn(z) =

1

N
Trace

(
1

n
YNY∗N − zIN

)−1

We are interested in the limiting behaviour of

LN =
1

N

N∑
i=1

δλi
with λi = λi

(
1

n
YNY∗N

)
Canonical equation

I Unknown tN is a Stieltjes transform, solution of

tN (z) =
1

N
Trace [(1− cn)RN − zIN − zcntN (z)RN ]−1

I Consider associated probability PN defined by

PN = (Stieltjes transform)−1(tN ) i.e. tN (z) =

∫ PN ( d λ)

λ− z

Convergence

I Then tN and PN are the determinitic equivalents of gn and LN :

gN (z)− tN (z)
a.s.−−−−−−→

N,n→∞
0 and

1

N

N∑
i=1

f(λi)−
∫
f(λ)PN (d λ)

a.s.−−−−−−→
N,n→∞

0 ,
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Remark

Assume moreover that

1

N

N∑
i=1

δλi(RN) −−−−−−→
N,n→∞

PR

Then instead of having a series of canonical equations depending on N :

tN (z) =
1

N
Trace [(1− cn)RN − zIN − zcntN (z)RN ]−1

we can obtain a ”limiting equation”

t(z) =

∫ PR(d λ)

(1− c)λ− z − zct(z)λ
where t(z) =

∫ P∞( d λ)

λ− z

and genuine limits

gN (z)
a.s.−−−−−−→

N,n→∞
t(z) ,

1

N

N∑
i=1

f(λi)
a.s.−−−−−−→

N,n→∞

∫
f(λ)P∞(d λ) ,

where the λi’s are the eigenvalues of 1
n

YNY∗N
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Simulations

I Consider the distribution

PR =
1

3
δ1 +

1

3
δ3 +

1

3
δ7

corresponding to a covariance matrix

RN = diag(1, 3, 7)

each with multiplicity ≈ N
3

.

I We plot hereafter the limiting spectral
distribution

P∞

for different values of c.

t(z) =
1

3

{
1

(1 − c)λ1 − z − zct(z)λ1

+
1

(1 − c)λ2 − z − zct(z)λ2

+
1

(1 − c)λ3 − z − zct(z)λ3

}
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Introduction

The largest eigenvalue in M̌P model

Given a N × n matrix XN with i.i.d. entries EXij = 0 and E|Xij |2 = σ2,

LN

(
1

n
XNX∗N

)
−−−−−−→
N,n→∞

PM̌P

where PM̌P has support

SM̌P = {0} ∪
[
σ2(1−

√
c)2 , σ2(1 +

√
c)2
]︸ ︷︷ ︸

bulk

(remove the set {0} if c < 1)

Theorem

I Let E|Xij |4 <∞, then:

λmax

(
1

n
XNX∗N

)
a.s.−−−−−−→

N,n→∞
σ2(1 +

√
c)2 .

Message: The largest eigenvalue converges to the right edge of the bulk.
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Figure : The largest eigenvalue (red) converges to the right edge of the bulk
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Spiked Models I

Definition

Let ΠN be a small perturbation of the identity:

ΠN = IN + PN where PN = θ1~u1~u
∗
1 + · · ·+ θk~uk~u

∗
k

I where k is independent of the dimensions N,n.

I and the ~ui’s are orthonormal

Consider

YN = Π
1/2
N XN

This model will be refered to as a (multiplicative) spiked model.

Think of ΠN as

ΠN =



1 + θ1
. . .

1 + θk
1

. . .



Very important: The number k of perturbations is finite
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Spiked Models II

Remarks

I The spiked model is a particular case of large covariance matrix model with

YN =
1

n
R

1/2
N XN and RN = IN +

k∑
`=1

θ`~u`~u
∗
`

I There are additive spiked models: X̌N = XN + AN where AN is a matrix with
finite rank.

I Spiked models have been introduced by Iain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis,
Annals of Statistics, 2001.

to take into account the fact that in many datasets, a small number of
eigenvalues is ”far away” the bulk of the other eigenvalues

Objective

I What is the influence of ΠN over the spectral limit of LN
(

1
n

YNY∗N
)

?

I What is the influence of ΠN over λmax
(

1
n

YNY∗N
)

?

I What is the influence of ΠN over the eigenvector ~vmax associated to λmax?
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Simulations
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Figure : Spiked model - strength of the perturbation θ = 0.1
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Simulations
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Figure : Spiked model - strength of the perturbation θ = 2

25



Simulations
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Figure : Spiked model - strength of the perturbation θ = 3
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Simulations
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Figure : Spiked model - Two spikes
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Simulations

N= 400 , n= 1000 , sqrt(c)=0.63, theta=[ 2,2.3,2.8 ]

spectrum

D
en
si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

Figure : Spiked model - Three spikes
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Simulations
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Figure : Spiked model - Multiple spikes
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The limiting spectral measure

Theorem

The following convergence holds true: LN
(

1
n

YNY∗N
) a.s.−−−−−−→
N,n→∞

PM̌P .

Remark

The limiting spectral measure is not sensitive to the presence of spikes
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The largest eigenvalue
We consider the following spiked model:

YN = (IN + θ~u~u∗)1/2 XN with ‖~u‖ = 1 .

which corresponds to a rank-one perturbation.

Theorem

Recall that c = limN,n→∞
N
n

.

I if θ ≤
√
c then

λmax = λmax

(
1

n
YNY∗N

)
a.s.−−−−−−→

N,n→∞
σ2(1 +

√
c)2

I if θ >
√
c then

λmax
a.s.−−−−−−→

N,n→∞
σ2(1 + θ)

(
1 +

c

θ

)
> σ2(1 +

√
c)2
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I If θ ≤
√
c then

λmax

(
1

n
YNY∗N

)
−−−−−−→
N,n→∞

σ2(1 +
√
c)2 .
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I If θ ≤
√
c then

λmax

(
1

n
YNY∗N

)
−−−−−−→
N,n→∞

σ2(1 +
√
c)2 .

Below the threshold
√
c, λmax

(
1
n

YNY∗N
)

asymptotically sticks to the bulk.
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I if θ >
√
c then

lim
N,n

λmax

(
1

n
YNY∗N

)
= σ2(1 + θ)

(
1 +

c

θ

)
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Figure : Limit of largest eigenvalue λmax as a function of the perturbation θ

I if θ >
√
c then

lim
N,n

λmax

(
1

n
YNY∗N

)
= σ2(1 + θ)

(
1 +

c

θ

)
> σ2

(
1 +
√
c
)2

Above the threshold
√
c, λmax

(
1
n

YNY∗N
)

asymptotically separates from the bulk.
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The eigenvector associated to λmax I

I Let:

YN = (IN + θ~u~u∗)1/2 XN with ‖~u‖ = 1 ,

= Π1/2XN

I Let ~vmax be the eigenvector associated to λmax:(
1

n
YNY∗N

)
~vmax = λmax~vmax

Question

I What is the behavior of ~vmax as N,n→∞ in the regime where

N

n
→ c ∈ (0,∞)?

Reminder

Behaviour of largest eigenvalue λmax well-understood:

I if θ ≤
√
c then λmax converges to the right edge of M̌P bulk.

I if θ >
√
c then λmax separates from the bulk.
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N

n
→ c ∈ (0,∞)?

Reminder

Behaviour of largest eigenvalue λmax well-understood:

I if θ ≤
√
c then λmax converges to the right edge of M̌P bulk.

I if θ >
√
c then λmax separates from the bulk.
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The eigenvector associated to λmax II

Preliminary observations

1. Let N finite, n→∞, then

1

n
YNY∗N = Π1/2

(
1

n
XNX∗N

)
Π1/2 −−−−→

n→∞
Π

As a consequence:
~vmax −−−−→

n→∞
~u .

2. If

N,n→∞ ,
N

n
→ c ,

then dim(~vmax) = N ↗∞ . We therefore consider the projection

~vmax~v
∗
max

on ~vmax of a generic deterministic vector ~aN , i.e.

~a∗N~vmax~v
∗
max~aN
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The eigenvector associated to λmax III

Theorem

Assume that θ >
√
c and let ~aN be a deterministic vector with norm 1, then

~a∗N~vmax~v
∗
max~aN −

(
1−

c

θ2

)(
1 +

c

θ

)−1
~a∗N~u~u

∗~aN
a.s.−−−−−−→

N,n→∞
0 .

Remarks

I The large dimension N
n
→ c induces a correction factor:

κ(c) =
(

1−
c

θ2

)(
1 +

c

θ

)−1

I Of course κ(c)→ 1 if c→ 0.

I we recover the fact that if N is finite, n→∞ (small data, large samples), then

~a∗N~vmax~v
∗
max~aN − ~a∗N~u~u

∗~aN
a.s.−−−−−−→

N,n→∞
0 .
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Summary

Spiked model

Let

I ΠN a small perturbation of the identity [Example: ΠN = IN + θ~u~u∗]

I XN a N × n matrix with i.i.d. entries

then YN = Π
1/2
N XN is a (multiplicative) spiked model

Global regime

The spectral measure LN
(

1
N

YNY∗N
)

converges to Marčenko-Pastur distribution:

Largest eigenvalue (rank one perturbation)

I if θ ≤
√
c , then λmax

(
1
N

YNY∗N
)

converges to the right edge of the bulk.

I if θ >
√
c , then λmax

(
1
N

YNY∗N
)

separates from the bulk.

Associated eigenvector

I In the large dimension setting, ~vmax ≈
(

1− c
θ2

) (
1 + c

θ

)−1
~u
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converges to Marčenko-Pastur distribution:

Largest eigenvalue (rank one perturbation)

I if θ ≤
√
c , then λmax

(
1
N

YNY∗N
)

converges to the right edge of the bulk.

I if θ >
√
c , then λmax

(
1
N

YNY∗N
)

separates from the bulk.

Associated eigenvector

I In the large dimension setting, ~vmax ≈
(

1− c
θ2

) (
1 + c

θ

)−1
~u

36



Summary

Spiked model

Let

I ΠN a small perturbation of the identity [Example: ΠN = IN + θ~u~u∗]

I XN a N × n matrix with i.i.d. entries

then YN = Π
1/2
N XN is a (multiplicative) spiked model

Global regime

The spectral measure LN
(

1
N

YNY∗N
)
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The hypothesis testing problem

Statistical Setup

let

~y(k) =

{
σ~w(k) under H0
~h s(k) + σ~w(k) under H1

for k = 1 : n

The ~y(k)’s are n observations all either drawn under H0 or H1. Here,

I ~w(k) is a N × 1 complex gaussian white noise process (σ unknown):

~w(k) ∼ CN(0, IN )

I ~h is a N × 1 deterministic and unknown vector and typically represents the
propagation channel

I s(k) represent the signal; it is a scalar complex gaussian i.i.d. process

Objective

Given n observations (~y(k), 1 ≤ k ≤ n), and the associated sample covariance matrix

R̂n =
1

n
YnY∗n where Yn = [~y(1), · · · , ~y(n)] is N × n ,

the aim is to decide H0 (no signal) or H1 (single-source detection) in the case where

N

n
→ c ∈ (0, 1) i.e. Dimension N of observations ∝ size n of sample
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The GLRT

Since σ2 and ~h are unknown, we cannot use the likelihood ratio test (which would
have been optimal by Neyman-Pearson).

The Generalized Likelihood Ratio Test

In the case where ~h and σ2 are unknown, we use instead:

Ln =
sup

σ2,~h
p1(Yn, σ2, ~h)

supσ2 p0(Yn, σ2)

which is no longer uniformily most powerful.

Expression of the GLRT

The GLRT statistics writes

Tn =
λmax(R̂n)
1
N

Trace R̂n

39
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The test statistics Tn

Denote by X̃N a matrix with i.i.d. 0/1 entries and let

ΠN =

(
IN +

‖~h‖2

σ2
~u~u∗

)
where ~u =

~h

‖~h‖
.

After some massaging, it turns out that

I Under H0,

Tn = λmax

(
1

n
X̃N X̃∗N

)
TN is simply the largest eigenvalue of a Wishart matrix

I Under H1,

Tn = λmax

(
1

n
Π

1/2
N X̃N X̃∗NΠ

1/2
N

)
TN is the largest eigenvalue of a rank-one perturbated Wishart matrix

The good news is that in both case, we can describe the limit.
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Limits of the test statistics Tn

Under H0

Tn
a.s.−−−−−−→

N,n→∞
(1 +

√
c)2

Under H1

Denote by

snr =
‖~h‖2

σ2

the Signal-to-Noise (SNR) ratio.

I if snr >
√
c then

Tn
a.s.−−−−−−→

N,n→∞
(1 + snr)

(
1 +

c

snr

)
> (1 +

√
c)2

I if snr ≤
√
c then

Tn
a.s.−−−−−−→

N,n→∞
(1 +

√
c)2
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Limit of the test statistics Tn III

Remarks

I If snr ≤
√
c then the test statistics does not discriminate between the two

hypotheses.

I Condition snr >
√
c is automatically fulfilled in the standard regime where

N fixed and n→∞ as c = lim
n→∞

N

n
= 0 .

I One can interpret
√
c as a level of the asymptotic noise induced by the data

dimension (=asymptotic data noise).

Hence the rule of thumb

Detection occurs if snr higher than asymptotic data noise.
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Simulations

N= 50 , n= 2000 , sqrt(c)= 0.158113883008419
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Simulations
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Simulations
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Simulations

N= 500 , n= 2000 , sqrt(c)= 0.5
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Simulations
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Threshold of the test I

I The exact distribution of the statistics Ln is needed to set the threshold of the
test for a given confidence level α ∈ (0, 1):

PH0
(LN > tα) = α ,

but hard to obtain.

I We rather study the asymptotic fluctuations of Ln under the regime

N,n→∞ ,
N

n
→ c ∈ (0, 1) .

I Recall that LN is the largest eigenvalue of a Whishat matrix 1
n

X̃N X̃∗N .

◦ We need to understand the fluctuations of λmax

(
1
n

X̃N X̃∗N

)
under H0,
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Threshold of the test II

Fluctuations of λmax

(
1
nX̃NX̃∗N

)

Theorem (Tracy-Widom)

N2/3

ΘN

{
λmax

(
1

n
X̃N X̃∗N

)
− (1 +

√
cn)2

}
L−−−−−−→

N,n→∞
PTW

where

cn =
N

n
and ΘN = (1 +

√
cn)

(
1
√
cn

+ 1

)1/3

Otherwise stated,

λmax

(
R̂n

)
= (1 +

√
cn)2 +

ΘN

N2/3
XTW + εn

where XTW is a random variable with Tracy-Widom distribution.

I Definition of Tracy-Widom distribution complicated ..

Don’t bother .. just download it

I For simulations, cf. R Package ’RMTstat’, by Johnstone et al.
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Figure : Fluctuations of the largest eigenvalue λmax(R̂n) under H0

48



Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection
The setup
Asymptotic behaviour of the GLRT
Fluctuations of the test statistics
Power of the test
The GLRT: Summary

Direction of Arrival Estimation

Conclusion

49



Power of the GLRT I

No optimality

Contrary to Neyman-Pearson procedure, there is no theoretical guarantee that the
GLRT is a uniformily most powerful test.

I It is therefore important to be able to compute the power of the GLRT

Large deviations

I Using large deviation techniques, one can compute the error exponent E as:

E = lim
N,n→∞

−
1

n
log PH1 (LN < tnα) .

I Hence, the type II error writes:

PH1
(LN < t(α)) ≈N,n→∞ e−nE
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Summary

I Consider the following hypothesis

~y(k) =

{
σ~w(k) under H0
~h s(k) + σ~w(k) under H1

for k = 1 : n

then the GLRT amounts to study

Tn =
λmax(R̂n)
1
N

Trace R̂n

I The test statistics Tn discriminates between H0 and H1 if snr =
‖~h‖2

σ2
>
√
c

I The threshold can be asymptotically determined by Tracy-Widom quantiles.

I The type II error (equivalentlty power of the test) can be analyzed via the error
exponent of the test

E = lim
N,n→∞

−
1

n
log PH1

(LN < tα) ,

which relies on the study of large deviations of λmax under H1.
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Estimation problem

The aim of the problem is:

I given n observations ~y1, · · · , ~yn each of dimension N with

~y = ~y(ϕ1, · · · ,ϕr)

I to estimate r scalar parameters ϕ1, · · · ,ϕr
Otherwise stated, the goal is to produce the following estimators:

[~y1, · · · , ~yn] −→ estimation −→ (ϕ̂1, · · · , ϕ̂r)

Regime of interest

I N,n of the same order and large. Formally: N,n→∞ and N
n
→ c ∈ (0,∞)

I r finite
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n
→ c ∈ (0,∞)

I r finite
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Source localization

Problem

r radio sources send their signal to a uniform array of N antennas during n signal
snapshots.

Problem: estimate arrival angles ϕ1, · · · ,ϕr

.

ϕ1

ϕ2

.

Figure : Two sources ϕ1 and ϕ2 to be estimated
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Signal model

The generic observation writes

~y =
r∑

`=1

~a(ϕ`)s` + σ ~w with ~a(ϕ) =
1
√
N


1

eiϕ

.

.

.

ei(N−1)ϕ

 and ~w ∼ CN(0, IN ) .

where

I s` is the scalar source signal associated to DoA ϕ`

I ~w is the white noise with variance σ2

In matrix form

YN = AN (~ϕ)SN + σWN

with

I AN (~ϕ) = [~a(ϕ1), · · · ,~a(ϕr)] deterministic of size N × r

I WN random with i.i.d. entries of size N × n
I SN of size r × n either deterministic or random

In a nutshell

YN is a (multiplicative) spiked model with a perturbation of rank r.
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Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {SI}gnal {C}lassification (Schmidt ’86)

Subspace estimation

I The estimation of the angles ϕ1, · · · , ϕr relies on the estimation of the
orthogonal projection ΠN of the eigenspace of the r largest eigenvalues of

1

n
EYnY∗n

Small data, large samples: standard estimator

Consider 1
n

YNY∗N , the empirical counterpart of 1
n
EYNY∗N and its r eigenvectors

(~ui, · · · , ~ur)

associated to its r largest (empirical) eigenvalues.

I Then the orthogonal projector associated to the r largest eigenvalues of
1
n

YNY∗N is

Π̂N =
r∑
`=1

~u`~u
∗
`

58



Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {SI}gnal {C}lassification (Schmidt ’86)

Subspace estimation

I The estimation of the angles ϕ1, · · · , ϕr relies on the estimation of the
orthogonal projection ΠN of the eigenspace of the r largest eigenvalues of

1

n
EYnY∗n

Small data, large samples: standard estimator

Consider 1
n

YNY∗N , the empirical counterpart of 1
n
EYNY∗N and its r eigenvectors

(~ui, · · · , ~ur)

associated to its r largest (empirical) eigenvalues.

I Then the orthogonal projector associated to the r largest eigenvalues of
1
n

YNY∗N is

Π̂N =
r∑
`=1

~u`~u
∗
`

58



Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {SI}gnal {C}lassification (Schmidt ’86)

Subspace estimation

I The estimation of the angles ϕ1, · · · , ϕr relies on the estimation of the
orthogonal projection ΠN of the eigenspace of the r largest eigenvalues of

1

n
EYnY∗n

Small data, large samples: standard estimator

Consider 1
n

YNY∗N , the empirical counterpart of 1
n
EYNY∗N and its r eigenvectors

(~ui, · · · , ~ur)

associated to its r largest (empirical) eigenvalues.

I Then the orthogonal projector associated to the r largest eigenvalues of
1
n

YNY∗N is

Π̂N =
r∑
`=1

~u`~u
∗
`

58



Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {SI}gnal {C}lassification (Schmidt ’86)

Subspace estimation

I The estimation of the angles ϕ1, · · · , ϕr relies on the estimation of the
orthogonal projection ΠN of the eigenspace of the r largest eigenvalues of

1

n
EYnY∗n

Small data, large samples: standard estimator

Consider 1
n

YNY∗N , the empirical counterpart of 1
n
EYNY∗N and its r eigenvectors

(~ui, · · · , ~ur)

associated to its r largest (empirical) eigenvalues.

I Then the orthogonal projector associated to the r largest eigenvalues of
1
n

YNY∗N is

Π̂N =
r∑
`=1

~u`~u
∗
`

58



The large dimension

If N,n of the same order

1
n

YNY∗N no longer a good estimator of 1
n
EYNY∗N .

Large data, large sample

I The consistent estimator or ΠN is given by

Π̂N =

r∑
k=1

(
1 +

c

θ̂k

)(
1−

c

θ̂2
k

)−1

~uk~u
∗
k

where the θ̂k’s are the estimated perturbations associated to the kth largest
eigenvalue.

I notice the correction terms with respect to the standard estimator.
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Simulation results I (courtesy from Romain Couillet)
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Figure : MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors,
M = 150 samples, SNR of 10 dB. Angles of arrival of 10◦, 35◦, and 37◦.
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Simulation results II
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Figure : MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors,
M = 150 samples, SNR of 10 dB. Angles of arrival of 10◦, 35◦, and 37◦.
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Conclusion

Large random matrix theory provides a number of methods which might be of interest
for the statistician in particular if one has to handle large data sets.
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