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> Let Ry be a deterministic N X N nonnegative definite hermitian matrix.

» Consider
Yy =RY’Xy .

Matrix Y v is a n-sample of N-dimensional vectors:
Yy =[Y1 - Y,] with Yq=RV?X, and EY. Y% =Ry .

» Ry often called Population covariance matrix.

Objective

To understand the spectrum of %YNYR,

as

N
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Remarks

1. The asymptotic regime N,n — oo and % — ¢ € (0,00) corresponds to the case
where the data dimension is of the same order as the number of available
samples.

2. If N fixed and n — oo (small data, large samples) then

1
7YNY}K\] — Ry
n

The spectral measure of a matrix A
. also called the empirical measure of the eigenvalues

If A is N X N hermitian with eigenvalues A1, --- , Ay then its spectral measure is:
1 Y #{Ai(A) € [a,b]}
Iy=g 20 = (b)) = FEre =
i=1

Otherwise stated

‘ Ly ([a,b]) is the proportion of eigenvalues of A in [a, b].
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Objectives of this talk

1. to describe the limiting spectral properties of the large covariance matrix

1 1
SY, Y = ~RY*X,X:RY?
n n

2. to study a particular class of covariance matrix models: spiked models, for which
one or several eigenvalues are clearly separated from the mass of the other
eigenvalues.

3. to present two applications of these results in statistical signal processing: signal
detection and direction of arrival estimation.
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Spectrum and eigenvectors analysis

The resolvent

> The resolvent of A is | Q(z) = (A — 2I)~!

> its singularities are exactly eigenvalues of A.

> Problem: if size of A big, then size of Q big as well.

The normalized trace of the resolvent

» Function

1
gn(z) = N'I‘race (A —21)"1

provides information on the spectrum of A.

> It is the Stieltjes transform of the spectral measure of A (cf. supra)
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Spectrum analysis: The Stieltjes Transform

Given a probability P, its Stieltjes transform is defined by

g(z):/RIi(i)\z , zeCt,

with inverse formula

/deP’ = fhm\s/f g(z +iy) dzx ,

T ylo
for f bounded continuous.
Properties

1. Convergence in distribution is characterized by pointwise convergence of Stieltjes
transforms:

B, TP & VaeCh gn(z):/Pn(d)\) — g(Z):/P(d)\)

A—z n—00 A—z

2. Spectral measure:

N

N
1 1 1 1

P:—Eév =  gn 2—57:—T A -2t
Ni:1 Ai(A) 9n(2) Nl.=1 Ai(A)—2z N race ( 1)

‘ The Stieltjes transfom gy, is the normalized trace of the resolvent (A — zI)~*
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Wishart Matrices

The model

> We first focus on covariance matrices in the case where .

> Hence Yy is a N X n matrix with i.i.d. entries EY;; =0, E|Y;;]?2 =02.

is a Wishart matrix.

The standard case N << n

Assume N fixed and n — oo (small data, large sample). Since
EY. 1YY =0%Iy

L.L.N implies

1 1 a.s
“YNYS =2 Y, YR 2 5%
n NIN n ; T 7 N

n—oo
In particular,
> all the eigenvalues of %YNY}*\, converge to o2,

> equivalently, the spectral measure of %YNY}‘\, converges to 2.
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Marcenko-Pastur theorem

Theorem

» Consider the spectral measure L :

1 X 1
Ln=—> 6, A=X[-YnNY3

> Then almost surely (= for almost every realization)

N
Ly —— Pyp  in distribution as — —— ¢ € (0, 00)
N,n—o0 n mn—oo

where Py is Mar€enko-Pastur distribution:

Pyp(dz) = (1 - %)Jréo(dx) 4 Vb —2)(@—a)

2no2zc Lap)(z) d

with

o = 21— 3
{b = 2(1++/0)?



Histogram for Wishart matrices
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Plot the histogram of its eigenvalues.
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Matrix model: Wishart matrix
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Consider the spectrum of }LYNY}*V in
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Density
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0.0

Plot the histogram of its eigenvalues.
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Matrix model: Wishart matrix

Consider the spectrum of %YNYTV in
the regime where
N
N,n—o00 and — — cé€ (0,00)
n

Plot the histogram of its eigenvalues.

Density

Wishart Matrix, N= 40 ,n= 100

0.0 0.5 1.0 15 20 25

spectrum

. . e p N _
Figure : Spectrum’s histogram - - = 0.7
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Matrix model: Wishart matrix

Consider the spectrum of %YNYTV in
the regime where
N
N,n—o00 and — — cé€ (0,00)
n

Plot the histogram of its eigenvalues.

Wishart Matrix, N= 200 ,n= 500
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spectrum

Figure : Spectrum’s histogram - & = 0.7
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Matrix model: Wishart matrix

Consider the spectrum of }LYNY}*V in
the regime where
N
N,n—o00 and — — cé€ (0,00)
n

Plot the histogram of its eigenvalues.

Wishart Matrix, N= 800 ,n= 2000

r T T T T 1
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spectrum

Figure : Spectrum’s histogram - & = 0.7
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Histogram for Wishart matrices

Matrix model: Wishart matrix

Consider the spectrum of }LYNY}*V in
the regime where
N
N,n—o00 and — — cé€ (0,00)
n

Plot the histogram of its eigenvalues.

Density

Wishart Matrix, N= 1600 ,n= 4000

0.8
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0.4

r T T T
0.0 05 10 15 20 25

spectrum

Figure : Spectrum’s histogram - & = 0.7

n
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Histogram for Wishart matrices: Mar&enko-Pastur's theorem

Wishart Matrix, N= 1600 ,n= 4000

g4 f\
N
I\
\
© | ‘\\
Matrix model: Wishart matrix
Consider the spectrum of %YNYjV in Z .
the regime where °
N o
N,n—o0o and — —c€ (0,00) °
n
Plot the histogram of its eigenvalues. s
0‘0 0‘5 110 1‘5 2‘0 2‘5

spectrum

Figure : Mar&enko-Pastur’s distribution (i
red)

n

Mar&enko-Pastur’s theorem (1967)

"The histogram of a Large Covariance Matrix converges to
Margenko-Pastur distribution with given parameter (here 0.7)"
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Elements of proof

1. Convergence of the Stieltjes transform. Since

1 N

Ly =320, oo Bae == 9n(2) o ST (Pyp)

i=1
we prove the convergence of g,.
2. After algebraic manipulations and probabilistic arguments, we prove that

1

02(1 —cp) — 2 — z02cpgn(2)

gn(z) =

3. Necessarily,
S o
gn N,n— oo gnp
which satisfies the fixed point equation:
1

02(1—¢) — z — zo2cgyp(2)

gnip (2) =

4. Solving explicitely the previous equation, we identify

Pyp = (Stieltjes Transform) ! (gyp) |
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Recall the notations

1 1 -t
Y, = R}V/QXN and gn(z) = N’[Yace (;YNY’;\, — zIN)

We are interested in the limiting behaviour of
1 Y 1
L :—E Ox, ith Ai=XN [ —-YNY]R
Y N = . . ' l(” N N)

Canonical equation

» Unknown t is a Stieltjes transform, solution of

1
tn(z) = NTrace [(1 - cn)Ry — 21y — zentn (2)Ry] 7!

> Consider associated probability P defined by

Pn(dA
Py = (Stieltjes transform) ™ (ty) ie. ty(z) = 1;(7)
—z

Convergence

> Then ty and Py are the determinitic equivalents of g, and Ly:

N
o)~ () TEE 0 and 52500 - [ RN (N

a.s.
> 0 )
N,
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Remark

Assume moreover that

N
1
- ) PR‘
N ; 5>\1 Rn) N,n— o0

Then instead of having a series of canonical equations depending on N:

1
tn(z) = NTrace [(1 —cn)Ry — 2In — zenty (2)Ry] 7!

we can obtain a " limiting equation”

B PR(d)) [ Poo(dN)
t(=) = / (1 =c)A—z — zct(2)A where - 8(z) = A—z

and genuine limits

gn(z) = t(2) ,
N,n—oco

LS g =t RSN
NZ:1 1 o0 )

N,n—oc0

where the \;'s are the eigenvalues of %YNY}*V
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» Consider the distribution
1 1 1
PR =26, + =63+ =6
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corresponding to a covariance matrix
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each with multiplicity ~ %
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P

for different values of c.
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> Consider the distribution = LSD

2 = Population

1 1 1
PR =26, + =63+ =6
30 T3P T3
corresponding to a covariance matrix B

Ry = diag(1,3,7)

0.5
L

each with multiplicity ~ %

> We plot hereafter the limiting spectral
distribution

0.0

]P)oo T T T T T T

0 2 4 6 8 10

for different values of c. Density

Figure : Plot of the Limiting Spectral Measure for

c=0.01
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> Consider the distribution ° ﬂ = LSD

= Population

1 1 1
PR =26, + =63+ =6
30 T3P T3
corresponding to a covariance matrix

Ry = diag(1,3,7)

0.2

each with multiplicity ~ %

0.1

> We plot hereafter the limiting spectral

distribution 1 \_

0.0

]P)oo T T T T T T

for different values of c. Density

Figure : Plot of the Limiting Spectral Measure for

c=0.1
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> Consider the distribution = LSD

04

= Population

1 1 1
PR:§51+§63+§67

corresponding to a covariance matrix

0.2

Ry = diag(1,3,7)

each with multiplicity ~ %

0.1

r

> We plot hereafter the limiting spectral

distribution T

0.0

]P)oo T T T T T T

for different values of c. Density

Figure : Plot of the Limiting Spectral Measure for

c=0.25
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1
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> Consider the distribution = LSD

04

= Population

1 1 1
PR:§51+§63+§67

0.3
L

corresponding to a covariance matrix

0.2

Ry = diag(1,3,7)

each with multiplicity ~ % 4
> We plot hereafter the limiting spectral \

distribution

0.0

]P)oo T T T T T T

for different values of c. Density

Figure : Plot of the Limiting Spectral Measure for

c=0.275
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Large Covariance Matrices - Limiting Density (LSD)

> Consider the distribution 4 = LSD

04

= Population

1 1 1
PR:§51+§63+§67

0.3
L

corresponding to a covariance matrix

Ry = diag(1,3,7)

each with multiplicity ~ % - | Y'\
> We plot hereafter the limiting spectral \—\

distribution T —

0.0

]P)oo T T T T T T

for different values of c. Density

Figure : Plot of the Limiting Spectral Measure for

c=0.35
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Large Covariance Matrices - Limiting Density (LSD)

» Consider the distribution 31 = LSD
= Population
1 1 1
PR = -6y + =03 + =07 LR
30 T3% T3
corresponding to a covariance matrix 3
RN :diag(1,3,7) g
each with multiplicity ~ % _
> We plot hereafter the limiting spectral ° \
distribution o | ——
]P)oo ° T T T T T T T
0 2 4 6 8 10 12

for different values of c. Density

Figure : Plot of the Limiting Spectral Measure for
c=0.6

1 1 1 1
t(z) = 7{ + + }
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The largest eigenvalue in MP model

Given a N x n matrix X with i.i.d. entries EX;; = 0 and E|X;;|? = 02,

1
L —XnNXy )| — Py,
N (TL N N) N,n—o00 MP

where Pyp has support

Syp = {0} U [0*(1=v0)”, o*(1+0)’]

bulk

(remove the set {0} if ¢ < 1)

Theorem

> Let E|X;;|* < oo, then:

,mn—»00

Amax (lxNx;‘V) —2% L0214 0)2 .
n
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Introduction

The largest eigenvalue in MP model
Given a N x n matrix X with i.i.d. entries EX;; = 0 and E\Xij|2 =02,
Ly (lXNXjV) — > Pyp
n N,n—o0
where Pyp has support
Syp = {0} U [0°(1-V0)*, a®(1+Ve)?]

bulk

(remove the set {0} if ¢ < 1)

Theorem

> Let E|X;;|* < oo, then:

,mn—»00

1 5.
Amax (5XNX7\7) L) 0'2(]. + \/5)2 .

‘ Message: The largest eigenvalue converges to the right edge of the bulk.
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Spiked Models |
Definition
Let ITy be a small perturbation of the identity:

> where k is independent of the dimensions N, n.

» and the U;'s are orthonormal

Consider

Yy =Xy

This model will be refered to as a (multiplicative) spiked model.
Think of TIy as

1+6;

IIy = 14 0y

Very important: The number k of perturbations is finite
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Remarks
> The spiked model is a particular case of large covariance matrix model with

k
Y = R,l/2 and RN = IN + Zegﬁ[ﬁz
=1

> There are additive spiked models: Xy = X + Ax where Ay is a matrix with
finite rank.

> Spiked models have been introduced by lain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis,
Annals of Statistics, 2001.

to take into account the fact that in many datasets, a small number of
eigenvalues is "far away” the bulk of the other eigenvalues

Objective

» What is the influence of IIx over the spectral limit of Ly ( YNYR)?
» What is the influence of IIy over Amax (%YNY}‘\,) ?

> What is the influence of IIy over the eigenvector Vimax associated to Amax?
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Figure : Spiked model - strength of the perturbation 6 = 0.1
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The limiting spectral measure

Theorem

The following convergence holds true:

Ly (7YNYR)

a.s.

—— Pyip -
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The limiting spectral measure

Theorem

.S.

The following convergence holds true: | L (%YNYT\,) — Pyp -

a
N,n—oc0

Remark

The limiting spectral measure is not sensitive to the presence of spikes
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We consider the following spiked model:
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which corresponds to a rank-one perturbation.

Theorem

Recall that ¢ = limpy o0 .

1
Amax = )\max (5YNY7\]) e — 2(1 + \/6)2

a.s.
e
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The largest eigenvalue
We consider the following spiked model:

Yy = (Iy +0ai*)/? Xy with | =1.
which corresponds to a rank-one perturbation.

Theorem

Recall that ¢ = limpy o0 .

1
Amax = )\max (;YNY;(\]) e — 2(1 + \/6)2

a.s.
e
N,n—oc0

Amax ——— 02(1+0) (1 + 5) > o?(1+/c)?
N,n—o0 6
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Phase transition Phenomenon
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Figure : Limit of largest eigenvalue Amax as a function of the perturbation 6

> If 0 < /c then

1
)\max (7YNY}<\7) S — 0'2(1 + \/E)z .
n

N,n—oco

Below the threshold \/¢, Amax (%YNY}‘\,) asymptotically sticks to the bulk.
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Figure : Limit of largest eigenvalue Amax as a function of the perturbation 6

> if @ > \/c then

. 1 * _ 2 ¢
i Ama (ZYNYN) = o2(1+0) (1+ 5)
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Phase transition Phenomenon

limit of lambda_max as a function of theta

lambda_max

02(1 +JE)2

0 Jc
theta
Figure : Limit of largest eigenvalue Amax as a function of the perturbation 6

> if 0 > \/c then

lim Amax (lYNij) = 02(1+e)(1+§)>02(1+\/¢)2
n

N,n

Above the threshold \/c, Amax (%YNY}*\,) asymptotically separates from the bulk. ‘
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> Let:
Yy = (Iy+06id”)
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1/2

XN with

d =1,
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> Let:
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HI/QXN

> Let Umax be the eigenvector associated to Amax:
1 s 4
(;YNY}"V) Umax = AmaxUmax

Question

» What is the behavior of ¥max as N,n — oo in the regime where
N
— —c€(0,00)?
n

Reminder

Behaviour of largest eigenvalue Amax well-understood:

> if then Amax converges to the right edge of MP bulk.
> if then Amax separates from the bulk.
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n NEN n NAN

o2 — 11
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Preliminary observations

1. Let N finite, n — oo, then

1 1
~YNYY =112 (—XNX}‘V) m/2 —
n n

n—oo

As a consequence:
Umax — U .
n— o0

N
N,n — oo, — —=c,
n

then | dim(Tmax) = N " 0o | We therefore consider the projection

— —x
UmaxVUmax
N . L L.
on Umax Of a generic deterministic vector @y, i.e.

k= —k —
ANUmaxVUmax AN
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The eigenvector associated to Apax I

Theorem

Assume that 6 > y/c and let @y be a deterministic vector with norm 1, then

Sk = _, - c e\l el a.s.
AN TmaxUpax@N — (1 — 9—2) (1 + 5) @nautdy m) 0.
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Theorem
Assume that 6 > y/c and let @y be a deterministic vector with norm 1, then
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,n—00
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> The large dimension % — ¢ induces a correction factor:

K(c) = <1 — 9%) (1 + g)_l
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The eigenvector associated to Apax I

Theorem
Assume that 6 > y/c and let @y be a deterministic vector with norm 1, then

—1
) (1+2)  ayaaay —==—o0.

% — sk — 1
QA NVUmaxVUmax AN — - 92 0 Nono
,n—00

Remarks
> The large dimension % — ¢ induces a correction factor:

K(c) = <1 — 9%) (1 + g)_l

> Of course k(c) — 1if ¢ — 0.
> we recover the fact that if IV is finite, n — oo (small data, large samples), then

AN TmaxUmax@N — Gydd @y —— 0.
N,n—oc0
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Summary

Spiked model

Let
» IIx a small perturbation of the identity [Example: IIxy = Iy + 6Ud*]

» X a N X n matrix with i.i.d. entries

then | Yy = H}V/ZXN is a (multiplicative) spiked model

Global regime

The spectral measure L (%YNY}‘V) converges to Mar&enko-Pastur distribution:

Largest eigenvalue (rank one perturbation)
> if , then Amax (%YNY}"V) converges to the right edge of the bulk.
> if , then Amax (%YNY}Q) separates from the bulk.

Associated eigenvector

> In the large dimension setting, | Vimax ~ (1 — 9%) (1 + 5)—1 u
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propagation channel

> s(k) represent the signal; it is a scalar complex gaussian i.i.d. process

Objective

Given n observations (§(k),1 < k < n), and the associated sample covariance matrix
- 1
R, =-Y,Y, where Y, =[y(1),---,¥(n)] isNxn,
n

the aim is to decide Hy (no signal) or Hi (single-source detection) in the case where

N
— —=ce(0,1) ie. ‘ Dimension N of observations o size n of sample
n
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The GLRT

Since 02 and h are unknown, we cannot use the likelihood ratio test (which would
have been optimal by Neyman-Pearson).

The Generalized Likelihood Ratio Test

In the case where h and o2 are unknown, we use instead:

n =

sup,2 po(Yn,02)
which is no longer uniformily most powerful.
Expression of the GLRT

The GLRT statistics writes

Amax (Rn )

Tn = 1 =
«~ Trace R,
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Statistical Test for Single-Source Detection

Asymptotic behaviour of the GLRT
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The test statistics T,

Denote by Xy a matrix with i.i.d. 0/1 entries and let

hil2
Iy = <IN + gﬁﬁ*) where d =
o

":5"1

=0
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The test statistics 7,

Denote by Xy a matrix with i.i.d. 0/1 entries and let
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Iy = <IN + gﬁﬁ*) where d =
o

5‘1‘ =

After some massaging, it turns out that
» Under Hp,

1~ ~
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T is simply the largest eigenvalue of a Wishart matrix ‘
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The test statistics 7,

Denote by Xy a matrix with i.i.d. 0/1 entries and let

_ [h|? L
IIy = IN+—2uu where U=
o

5‘1‘ =

After some massaging, it turns out that
» Under Hp,

1~ ~
Th = )\max (;XNX*N>

T is simply the largest eigenvalue of a Wishart matrix ‘

» Under Hq, .
T = Amax (;H}\{Q)?Nij‘vn}v”)

T is the largest eigenvalue of a rank-one perturbated Wishart matrix
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The test statistics 7,

Denote by Xy a matrix with i.i.d. 0/1 entries and let

":5"1

2
Iy <IN+ Ih ” ﬁﬁ*) where U=

=0

After some massaging, it turns out that
» Under Hp,

1~ ~
Th = )\max (;XNX*N>

T is simply the largest eigenvalue of a Wishart matrix ‘

» Under Hq,
T = >\max (gnl/gx X* }\1/2)

T is the largest eigenvalue of a rank-one perturbated Wishart matrix

The good news is that in both case, we can describe the limit.
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Limits of the test statistics 7,
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Limits of the test statistics 7,

Under H

Tn

a.s. (1 + \/E)Q
N,n—o0
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Under H
Tn a.s. (1 + \/E)Q
N,n—o0
Under H;
Denote by
T
o2

the Signal-to-Noise (SNR) ratio.
> if snr > /c then
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Limits of the test statistics 7,

Under H
T a.s. (1 + \/E)Q
N,n—oo
Under H;
Denote by
T
o2

the Signal-to-Noise (SNR) ratio.
> if snr > /c then

Tn —=2 (14 snr) (14 == ) > (14 V0)?
N,n—o00

snr

> if snr < /c then
T, a.s. (1 + \/E)Q

,N—00
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Limit of the test statistics 75, Il

Remarks

> If then the test statistics does not discriminate between the two
hypotheses.

43



Limit of the test statistics 75, Il

Remarks
> If then the test statistics does not discriminate between the two
hypotheses.
» Condition is automatically fulfilled in the standard regime where

N fixed and n—o00 as c¢c= lim — =0.

43



Limit of the test statistics 75, Il

Remarks
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N
N fixed and n—o00 as c¢c= lim — =0.

» One can interpret \/c as a level of the asymptotic noise induced by the data
dimension (=asymptotic data noise).
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Limit of the test statistics 75, Il

Remarks

> If then the test statistics does not discriminate between the two

hypotheses.
» Condition is automatically fulfilled in the standard regime where

N
N fixed and n—o00 as c¢c= lim — =0.
n—oo n

» One can interpret \/c as a level of the asymptotic noise induced by the data
dimension (=asymptotic data noise).

Hence the rule of thumb

‘ Detection occurs if snr higher than asymptotic data noise.
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Simulations

Density

N= 50, n=2000, sqrt(c)= 0.158113883008419

o

2

o
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o

=
T T T T T 1
0.8 1.0 1.2 1.4 1.6 1.8

spectrum

Figure : Influence of asymptotic data noise as /c increases
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Simulations

Density

N= 100, n= 2000, sqrt(c)= 0.223606797749979
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Figure : Influence of asymptotic data noise as /c increases
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Simulations

Density

N= 200, n= 2000, sqrt(c)= 0.316227766016838
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Figure : Influence of asymptotic data noise as /c increases
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Simulations

Density

N= 500 , n= 2000, sqrt(c)= 0.5
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Figure : Influence of asymptotic data noise as /c increases
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Simulations

Density

N= 1000, n= 2000, sqrt(c)= 0.707106781186548

®

o

©

o

o
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N

o

o

=
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0.0 0.5 1.0 1.5 2.0 25 3.0

spectrum

Figure : Influence of asymptotic data noise as /c increases
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Statistical Test for Single-Source Detection

Fluctuations of the test statistics
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Threshold of the test |

» The exact distribution of the statistics L,, is needed to set the threshold of the
test for a given confidence level a € (0,1):

Pay (LN > ta) =a,

46



Threshold of the test |

» The exact distribution of the statistics L,, is needed to set the threshold of the
test for a given confidence level a € (0,1):

Pay (LN > ta) =a,

but hard to obtain.

46



Threshold of the test |

» The exact distribution of the statistics L,, is needed to set the threshold of the
test for a given confidence level a € (0,1):

Pay (LN > ta) =a,

but hard to obtain.
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Threshold of the test |

» The exact distribution of the statistics L,, is needed to set the threshold of the
test for a given confidence level a € (0,1):

Pay (LN > ta) =a,

but hard to obtain.

> We rather study the asymptotic fluctuations of L, under the regime

N
N,n—o0o, — —=c€e(0,1).
n

> Recall that Ly is the largest eigenvalue of a Whishat matrix %)NCNX*N

o We need to understand the fluctuations of Amax (%)NCNSC’]‘V) under Hy,
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Threshold of the test Il

Fluctuations of Apax (%)N(Nf(j‘v)
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Threshold of the test Il
Fluctuations of A\ ax <71,5(1\X7v>

Theorem (Tracy-Widom)

N2/3 s <
) {Amax (;XNXTV> - (1 + vV Cn)2} ;} ]PTW
N n (e o)

where

N 1 1/3
cn=— and Oy =(1++/cn) (——i—l)
n
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Threshold of the test Il
Fluctuations of A\ ax (%X\on

Theorem (Tracy-Widom)

N2/3 s <
* 2 L
) {Amax (;XNXN) — (14 +vecn) } ﬁ Prw
N ,m—>00

where

N 1 1/3
cn=— and Oy =(1++/cn) (— + 1)
n

Otherwise stated,

)\max (Rn) (1"‘\/&)2 N2/3 XTW +én

where X 7y is a random variable with Tracy-Widom distribution.
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Threshold of the test Il
Fluctuations of A\ ax (%X\X’(\>

Theorem (Tracy-Widom)

N2/3 s < 9 c
{Amax <7XNX*N> - (1 + vV Cn) } e ea— ]PTW
On n N,n—o00

where

N 1 1/3
cn=— and Oy =(1++/cn) (—4»1)
n

Otherwise stated,

Amax (ﬁn) (]- + Cn) N2/3 XTW +én

where X 7y is a random variable with Tracy-Widom distribution.

> Definition of Tracy-Widom distribution complicated ..
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Threshold of the test Il
Fluctuations of A\ ax (%X\Xx\>

Theorem (Tracy-Widom)

N2/3 s < 9 c
{Amax (7XNX*N> - (1 + vV Cn) } e ea— ]PTW
On n N,n—o00

where

N 1 1/3
cn=— and Oy =(1++/cn) (—+1)
n

Otherwise stated,

Amax (ﬁn) (]- + Cn) N2/3 XTW +én

where X 7y is a random variable with Tracy-Widom distribution.

> Definition of Tracy-Widom distribution complicated ..

Don't bother .. just download it

> For simulations, cf. R Package ’RMTstat’, by Johnstone et al.
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Tracy-Widom curve

Marchenko-Pastur and Tracy-Widom Distributions

2.0

0.0

Figure : Fluctuations of the largest eigenvalue )\max(ﬁn) under Hg
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Statistical Test for Single-Source Detection

Power of the test
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Power of the GLRT |

No optimality

Contrary to Neyman-Pearson procedure, there is no theoretical guarantee that the
GLRT is a uniformily most powerful test.

> | It is therefore important to be able to compute the power of the GLRT
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Power of the GLRT |

No optimality

Contrary to Neyman-Pearson procedure, there is no theoretical guarantee that the
GLRT is a uniformily most powerful test.

> | It is therefore important to be able to compute the power of the GLRT

Large deviations

» Using large deviation techniques, one can compute the error exponent € as:

1
€= lim ——logPpy, (Ly <ty).
n

N,n—oo

> Hence, the type Il error writes:

P, (L < H@)) RN oo €6
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Statistical Test for Single-Source Detection

The GLRT: Summary
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Summary
» Consider the following hypothesis

) oW (k)
(k) = { B s(k) + ow(k)

under Hy
under Hq

fork=1:n
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Summary

» Consider the following hypothesis

F(k) = { ow (k) under Ho

hs(k) +ow(k) under Hy

then the GLRT amounts to study

Amax (Rn)

T, = T —
~ Trace R,

fork=1:n
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F(k) = { ow (k) under Ho
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then the GLRT amounts to study

Amax (Rn)

T, = T —
~ Trace R,

» The test statistics T}, discriminates between Hgy and H; if

fork=1:n
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Summary

» Consider the following hypothesis

. ow (k) under Ho
k) = ~ for k=1:
y(k) { hs(k) + ow(k) under Hq or "
then the GLRT amounts to study
7= Jm )
NTrace R,
. o _ (|2
» The test statistics T}, discriminates between Hy and H; if | snr = — > c
o

> The threshold can be asymptotically determined by Tracy-Widom quantiles.
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Summary

» Consider the following hypothesis

. ow (k) under Ho
k) = ~ for k=1:
y(k) { hs(k) + ow(k) under Hq or "
then the GLRT amounts to study
Amax (R
7, = JmexBa)
NTrace R,
. o , b2
» The test statistics T}, discriminates between Hy and H; if | snr = — > c
o

> The threshold can be asymptotically determined by Tracy-Widom quantiles.

> The type Il error (equivalentlty power of the test) can be analyzed via the error
exponent of the test

1
E= lim ——logPy, (Ln <ta),
n

N,n—o0

which relies on the study of large deviations of Amax under Hj.
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Direction of Arrival Estimation
Position of the problem
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Estimation problem

The aim of the problem is:
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Estimation problem

The aim of the problem is:

> given n observations ¥, - , ¥,

n

each of dimension N with

—,

¥=9(p1, pr)
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Estimation problem

The aim of the problem is:

> given n observations ¥, - - , Y, each of dimension N with

n

—,

¥=9(p1, pr)

> to estimate 7 scalar parameters ¢, - , @,

Otherwise stated, the goal is to produce the following estimators:

[ Fn] — [estimation | — (1, &,)
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Estimation problem

The aim of the problem is:

> given n observations ¥, - - , Y, each of dimension N with

n

—,

¥=9(p1, pr)

> to estimate 7 scalar parameters ¢, - , @,

Otherwise stated, the goal is to produce the following estimators:
(G ) — — (@1 B)

Regime of interest

» N, n of the same order and large. Formally: N,n — co and % — ¢ € (0,00)

> r finite
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Source localization

Problem

7 radio sources send their signal to a uniform array of N antennas during n signal
snapshots.

Problem: estimate arrival angles ¢, - , ¢,

Figure : Two sources ¢, and ¢, to be estimated
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Signal model

The generic observation writes

1
” 1 et
7= a(p,)se + oW | with @(p) = —
2, e w|o
LA(N=1)p

where
> sy is the scalar source signal associated to DoA ¢,

> % is the white noise with variance o2

In matrix form

Yy =ANn(@)SN +0Wn

with
> AN(®) =[d(e,), - ,a(p,)] deterministic of size N X r
» W random with i.i.d. entries of size N X n

» Sy of size » X n either deterministic or random

and W ~ CN(0,Iy) .
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Signal model

The generic observation writes

” et

=1 2\

where
> sy is the scalar source signal associated to DoA ¢,

> % is the white noise with variance o2

In matrix form

Yy =ANn(@)SN +0Wn

with
> AN(®) =[d(e,), - ,a(p,)] deterministic of size N X r
» W random with i.i.d. entries of size N X n

» Sy of size » X n either deterministic or random

In a nutshell

Y n is a (multiplicative) spiked model with a perturbation of rank 7.

F=Y a(p,)se+ow| with a(p)=— . and @ ~ CN(0,1In) .
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Direction of Arrival Estimation

MUSIC Algorithm
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Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {Sl}gnal {C}lassification (Schmidt '86)
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Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {Sl}gnal {C}lassification (Schmidt '86)
Subspace estimation

> The estimation of the angles ¢1,- -, p, relies on the estimation of the
orthogonal projection Il of the eigenspace of the r largest eigenvalues of

1
—EY, Y}
n
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Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {Sl}gnal {C}lassification (Schmidt '86)
Subspace estimation

> The estimation of the angles ¢1,- -, p, relies on the estimation of the
orthogonal projection Il of the eigenspace of the r largest eigenvalues of

1
—EY, Y}
n

Small data, large samples: standard estimator

Consider %YNY* , the empirical counterpart of %EYNY}"V and its r eigenvectors
(@i, r)

associated to its 7 largest (empirical) eigenvalues.
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Source localization with subspace estimation

Method known as MUSIC for {MU}ltiple {Sl}gnal {C}lassification (Schmidt '86)
Subspace estimation

> The estimation of the angles ¢1,- -, p, relies on the estimation of the
orthogonal projection Il of the eigenspace of the r largest eigenvalues of

1
—EY, Y}
n

Small data, large samples: standard estimator

Consider %YNY* , the empirical counterpart of %EYNY}"V and its r eigenvectors
(@i, r)

associated to its 7 largest (empirical) eigenvalues.

> Then the orthogonal projector associated to the r largest eigenvalues of
LynYyis

™
Oy =" aa;
=1
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The large dimension

If N,n of the same order

%YNY}‘\, no longer a good estimator of %EYNY}‘V.
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The large dimension

If N,n of the same order

%YNY}‘\, no longer a good estimator of %EYNY}‘V. ‘

Large data, large sample

> The consistent estimator or Il is given by

A L C C -t
Ay = (1 n A—) 1- 2 G
kgl Ok 07

where the ék's are the estimated perturbations associated to the kth largest
eigenvalue.

> notice the correction terms with respect to the standard estimator.
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Simulation results | (courtesy from Romain Couillet)

Cost function [dB]

——— MUSIC i
- - —-G-MUSIC 1
-30 | L

-10 3537

angle [deg]

Figure : MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors,
M = 150 samples, SNR of 10 dB. Angles of arrival of 10°, 35°, and 37°.

60



Simulation results |l

—15

—20

Cost function [dB]

—25

angle [deg]

Figure : MUSIC against G-MUSIC for DoA detection of K = 3 signal sources, N = 20 sensors,
M = 150 samples, SNR of 10 dB. Angles of arrival of 10°, 35°, and 37°.
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Conclusion
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Conclusion

Large random matrix theory provides a number of methods which might be of interest
for the statistician in particular if one has to handle large data sets.
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