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Approximation spaces

Let X be a quasi-Banach space. An approximation family in X is a
sequence (G, )nen, formed by subsets of X such that the following
conditions hold
Gp =0 and G, € G, for ne Ny,
AG, € G, for any scalar A and ne N,
Gn,+ G, € Gpyp for any n,me N.
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sequence (G, )nen, formed by subsets of X such that the following
conditions hold
Gp =0 and G, € G, for ne Ny,
AG, € G, for any scalar A and ne N,

Gn,+ G, € Gpyp for any n,me N.

Given any f € X and n € N, the n-th approximation error of f is given by

E,(f) = E,(f; X) = inf{||f — g|x : g € Go_1}.



Let > 0 and 0 < p < c0. The approximation space X = (X, G,)5 is
the set of all f € X which have a finite quasi-norm

@ 1/p
I1fllxg = (Zl(n"‘En(f))pn_l> :
> A. Pietsch, J. Approx. Theory 32 (1981) 115-134.
> P.L. Butzer, K. Scherer, Mannheim, 1968.

> Yu.A. Brudnyt, Jaroslavl, 1977.

> Yu.A. Brudny?, N. Krugljak, Jaroslavl, 1978.

> R.A. DeVore, G.G. Lorentz, Springer, Berlin, 1993.
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coordinates different from 0, then

En(g) = ‘5:' and (EOC)?; = él/a,p-

e Let E and F be Banach spaces. If X = £(E, F) and G, = §,(E, F),
then
En(T) = an(T) and (£(E, F))p = £1/a,p(E, F).

elet 0 <p<oo. If X=LP(T) and G, = T,, the subset of all
trigonometric polynomials with degree less than or equal to n, that is,

n

Tnz{ Z ckeikx:cke((j}.
k=—n

Then, (LP(']I‘));’ = Bg,q('l[‘).

> H.-J. Schmeisser, H. Triebel, Wiley, Chichester, 1987.
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Let —o0 <y <o and 0 < p < o0. The limiting approximation space
X% = (X, G, is formed by all elements f € X such that

& 1/p
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> F. Cobos, M. Milman, Numer. Funct. Anal. Optim. 11 (1990) 11-31.
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Note that X,§°’”) = X if ¥ < —1/p. Moreover, the following continuous

embeddings hold
X5 — X0 — X

for any choice of parameters.
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o If X = £(E,F) and G, = §,(E, F). Then,
(E(E, )PP = Loo,p,4(E, F).

e let0<p<oo. If X=LP(T)and G, = T,. Then,
(LP(T) P = BOV(’]T) where

1 dt 1/q
Ilagz ey = Il + ([ (@ = tog eyt 0005 )

> R.A. DeVore, S.D. Riemenschneider, R.C. Sharpley, J. Funct. Anal. 33
(1979) 58-94.

> F. Cobos, O. Dominguez, Studia Math. 223 (2014) 193-204.
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k=0
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The theory of limiting approximation spaces does not follow by taking
a = 0 in the classical theory.

- 1/p
f = 88k e G, |flxs ~ inf (Z (2 lgklx) ) :

k=0

e Limiting representation theorem (Cobos-Resina, Fehér-Grassler).- Let

v>—1/pand py = 22k, k=0,1,.... An element f € X belongs to X,SO””

if and only if

(e0)
f=zgk7gk€GHk, (3)
k=0
with
(e0]
KR g |1x)P < 0. (4)
k=0
Moreover,

o 1/p
[Flxgo ~ inf (Z (2* ”“/P>|gk|x>"> ,

where the infimum is taking over all possible representations (3) such
that (4) holds.
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Reiteration of approximation constructions

Let (G,) be an approximation scheme in X. Since G, < X' and
G, S XC§077) for any n € Ng. Then, (G,) determines an approximation
scheme in X and x§om.

Reiteration theorem (Pietsch).- Let o, 5 > 0 and 0 < p,r < 0. Then, we
have with equivalence of quasi-norms

(X7 = X+P,
Reiteration theorem (Fehér-Grassler).- Let 0 < g, r < 00,y > —1/q and
0 > —1/r. Then, we have with equivalence of quasi-norms

(Xéo,y))go,é) - X,(OWH/‘?”).
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= E. Pustylnik, Collect. Math. 57 (2006) 257-277.
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THEOREM.- Suppose that @ > 0,0 < p, g < o0 and v > —1/q. Then,

(Xéo’y))g = X,Sa’%q/q) with equivalence of quasi-norms, where

o0 1/p
||f||X,§a,'y+l/q) = <Z (n*(1 + log n)V+1/qE,,(f; X))Pn1> .

n=1
PROOF (OUTLINE).- The embedding (X§>7)2 < X 719 i
obtained via Jackson-type inequality

Ean-1(f; X) < (1 + log n)~ VA E (£, X{®), f e X{®7) neN.

Conversely, to obtain the embedding X\*7 ™9 (Xcgo’v))g‘ we use the

representation theorem for X\ ™/%),



Let & > 0,0 < p,qg <0 and v > —1/q. The space Z, p ,q is formed by
all £ € £y, for which

1/q
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Let & > 0,0 < p,qg <0 and v > —1/q. The space Z, p ,q is formed by
all £ € £y, for which

1/q

0 0 1/p7] 9
S| (1 + log )7 (Zuampjl) T

n=1

When g = 1, Z, 5 ~,1 is a small Lorentz sequence space.

= A. Fiorenza, G.E. Karadzhov, Z. Anal. Anwend. 23 (2004) 657-681.
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Let & > 0,0 < p,g < and v = —1/q. The space Z, p .4 is formed by
all £ € £y, for which

1/q
(e.0]

1/p7]9
2 1+ logn)? Z(]O‘ YPj~ > nt < 0.

n=1

THEOREM.- Suppose that « > 0,0 < p,q < o and v > —1/q. Then we
have with equivalence of quasi-norms

(XY = X ~ {f € X : (En(F)) € Zapy,a)-

In general, (X)) # X§**). The following sharp embeddings hold

Xcgoz,'y-i—l/min{p.q}) N (X;)EJO,V) N X(ga,'y+l/max{p,q}).

In particular, (XO‘)(O M = xfertl/a),



Relation between smoothness of D¥f and f

Let a,ye R and 0 < p,q < 0. Let (¢})jen, be a dyadic resolution of
unity. The Besov space By (T) is formed by all f € D'(T) such that

@ 1/q
Ifllggyemy = (2(2”(1 +J')7|31(<P13f)|m(qr))q> < 0.

P

Here § and §~! denotes the Fourier transform and inverse Fourier
transform, respectively.
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Here § and §~! denotes the Fourier transform and inverse Fourier
transform, respectively.

q kA k A
Let k € N. It holds that if f € BS7(T) then D*f € BY)(T).
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It holds that By (T) = B2 (T) if v > 0. However, BY7(T) # B%(T).
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by all f € LP(T) such that

1 dt 1/q
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where M € N with M > «.

We have that (LP(T))$") = B22(T).

It holds that BZ7 (T) = B2 (T) if o > 0. However, B37(T) # B%(T).
> F. Cobos, O. Dominguez, J. Math. Anal. Appl. 425 (2015) 71-84.
For v+ > —1/2, we have that B0 yH2 BO’7 As a consequence, in order
to have D*f € B))(T) we need that fe Bk 7T(T) for some ¢ > 0.

e (DeVore, Riemenschneider, Sharpley) If f € B,’;;g“(T) then
Dkf e BY(T).
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THEOREM.- Let 1 < p < 0,0 < g < oo and v > —1/q. If
f € Byt ™29} (T) then D*f € BYY(T).

PROOF - Since the operator D* : WX(T) — LP(T) is bounded, then
k. k 0, 0,7) _ RO,
DX - (W ()PP — (LP(T)Y = BYH(T).
Applying reiteration constructions we derive that

(W (MNP < (B mingp2y (ME? = (LP(T)ringp2) "

- (LP(T))gk77+1/mi“{27P7Q}) - Bl;:gﬂ/min{%p,q} (T).

REMARK:.- The previous result is the best possible.
> F. Cobos, O. Dominguez, preprint (2015).
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