Reiteration of approximation spaces

Óscar Domínguez joint work with Fernando Cobos

Universidad Complutense de Madrid

June, 2015

Approximation spaces

Let X be a quasi-Banach space. An approximation family in X is a sequence $(G_n)_{n\in\mathbb{N}_0}$ formed by subsets of X such that the following conditions hold

$$G_0=0$$
 and $G_n\subseteq G_{n+1}$ for $n\in\mathbb{N}_0,$ $\lambda\,G_n\subseteq G_n$ for any scalar λ and $n\in\mathbb{N},$ $G_n+G_m\subseteq G_{n+m}$ for any $n,m\in\mathbb{N}.$

Approximation spaces

Let X be a quasi-Banach space. An approximation family in X is a sequence $(G_n)_{n\in\mathbb{N}_0}$ formed by subsets of X such that the following conditions hold

$$G_0 = 0$$
 and $G_n \subseteq G_{n+1}$ for $n \in \mathbb{N}_0$,

$$\lambda G_n \subseteq G_n$$
 for any scalar λ and $n \in \mathbb{N}$,

$$G_n + G_m \subseteq G_{n+m}$$
 for any $n, m \in \mathbb{N}$.

Given any $f \in X$ and $n \in \mathbb{N}$, the *n*-th approximation error of f is given by

$$E_n(f) = E_n(f; X) = \inf\{\|f - g\|_X : g \in G_{n-1}\}.$$

Let $\alpha > 0$ and $0 . The approximation space <math>X_p^{\alpha} = (X, G_n)_p^{\alpha}$ is the set of all $f \in X$ which have a finite quasi-norm

$$\|f\|_{X_p^\alpha} = \left(\sum_{n=0}^\infty (n^\alpha E_n(f))^p n^{-1}\right)^{1/p}.$$

⊳ A. Pietsch, J. Approx. Theory 32 (1981) 115–134.

⊳ P.L. Butzer, K. Scherer, Mannheim, 1968.

⊳ Yu.A. Brudnyĭ, Jaroslavl, 1977.

> Yu.A. Brudnyĭ, N. Krugljak, Jaroslavl, 1978.

⊳ R.A. DeVore, G.G. Lorentz, Springer, Berlin, 1993.

• Let $X = \ell_{\infty}$ and $G_n = s_n$, the subset of sequences having at most n coordinates different from 0, then

$$E_n(\xi) = |\xi_n^*|$$
 and $(\ell_\infty)_p^\alpha = \ell_{1/\alpha,p}$.

• Let $X = \ell_{\infty}$ and $G_n = s_n$, the subset of sequences having at most n coordinates different from 0, then

$$E_n(\xi) = |\xi_n^*|$$
 and $(\ell_\infty)_p^\alpha = \ell_{1/\alpha,p}$.

• Let E and F be Banach spaces. If $X = \mathfrak{L}(E,F)$ and $G_n = \mathfrak{F}_n(E,F)$, then

$$E_n(T) = a_n(T)$$
 and $(\mathfrak{L}(E,F))^{\alpha}_p = \mathfrak{L}_{1/\alpha,p}(E,F)$.

• Let $X = \ell_{\infty}$ and $G_n = s_n$, the subset of sequences having at most n coordinates different from 0, then

$$E_n(\xi) = |\xi_n^*|$$
 and $(\ell_\infty)_p^\alpha = \ell_{1/\alpha,p}$.

• Let E and F be Banach spaces. If $X = \mathfrak{L}(E,F)$ and $G_n = \mathfrak{F}_n(E,F)$, then

$$E_n(T) = a_n(T)$$
 and $(\mathfrak{L}(E,F))_p^{\alpha} = \mathfrak{L}_{1/\alpha,p}(E,F)$.

• Let $0 . If <math>X = L^p(\mathbb{T})$ and $G_n = T_n$, the subset of all trigonometric polynomials with degree less than or equal to n, that is,

$$T_n = \left\{ \sum_{k=-n}^n c_k e^{ikx} : c_k \in \mathbb{C} \right\}.$$

Then, $(L^p(\mathbb{T}))_q^\alpha = \mathbf{B}_{p,q}^\alpha(\mathbb{T})$.

⊳ H.-J. Schmeisser, H. Triebel, Wiley, Chichester, 1987.

Let $\alpha > 0$ and $0 . The approximation space <math>X_n^{\alpha} = (X, G_n)_n^{\alpha}$ is

the set of all $f \in X$ which have a finite quasi-norm

$$. The approximation space $X_p^{\alpha} = (X, G_n)_p^{\alpha}$ X which have a finite quasi-norm
$$\|f\|_{X_p^{\alpha}} = \left(\sum_{n=1}^{\infty} (n^{\alpha} E_n(f))^p n^{-1}\right)^{1/p}.$$$$

Let $-\infty < \gamma < \infty$ and 0 . The limiting approximation space $X_n^{(0,\gamma)} = (X, G_n)_n^{(0,\gamma)}$ is formed by all elements $f \in X$ such that

$$||f||_{X^{(0,\gamma)}} = \left(\sum_{1}^{\infty} ((1 + \log n)^{\gamma} E_n(f))^p n^{-1}\right)^{1/p} < 0$$

$$||f||_{X_p^{(0,\gamma)}} = \left(\sum_{r=1}^{\infty} ((1 + \log n)^{\gamma} E_n(f))^p n^{-1}\right)^{1/p} < \infty.$$

Let $-\infty < \gamma < \infty$ and $0 . The limiting approximation space <math>X_p^{(0,\gamma)} = (X, G_n)_p^{(0,\gamma)}$ is formed by all elements $f \in X$ such that

$$||f||_{X_p^{(0,\gamma)}} = \left(\sum_{n=1}^{\infty} ((1+\log n)^{\gamma} E_n(f))^p n^{-1}\right)^{1/p} < \infty.$$

► F. Cobos, I. Resina, J. London Math. Soc. 39 (1989) 324–334.
 ► F. Cobos, M. Milman, Numer. Funct. Anal. Optim. 11 (1990) 11–31.

 \rhd F. Fehér, G. Grässler, J. Comput. Anal. Appl. 3 (2001) 95–108.

Let $-\infty < \gamma < \infty$ and $0 . The limiting approximation space <math>X_n^{(0,\gamma)} = (X, G_n)_p^{(0,\gamma)}$ is formed by all elements $f \in X$ such that

$$||f||_{X_p^{(0,\gamma)}} = \left(\sum_{n=1}^{\infty} ((1+\log n)^{\gamma} E_n(f))^p n^{-1}\right)^{1/p} < \infty.$$

⊳ F. Cobos, I. Resina, J. London Math. Soc. 39 (1989) 324–334.

⊳ F. Cobos, M. Milman, Numer. Funct. Anal. Optim. 11 (1990) 11–31.

⊳ F. Fehér, G. Grässler, J. Comput. Anal. Appl. 3 (2001) 95–108.

Note that $X_p^{(0,\gamma)}=X$ if $\gamma<-1/p$. Moreover, the following continuous embeddings hold

$$X_p^\alpha \hookrightarrow X_q^{(0,\gamma)} \hookrightarrow X$$

for any choice of parameters.

• Let
$$X = \ell_{\infty}$$
 and $G_n = s_n$. Then, $(\ell_{\infty})_p^{(0,\gamma)} = \ell_{\infty,p}(\log \ell)_{\gamma}$.

- Let $X = \ell_{\infty}$ and $G_n = s_n$. Then, $(\ell_{\infty})_p^{(0,\gamma)} = \ell_{\infty,p}(\log \ell)_{\gamma}$.
- If $X = \mathfrak{L}(E, F)$ and $G_n = \mathfrak{F}_n(E, F)$. Then, $(\mathfrak{L}(E, F))_p^{(0,\gamma)} = \mathfrak{L}_{\infty,p,\gamma}(E, F)$.

- Let $X = \ell_{\infty}$ and $G_n = s_n$. Then, $(\ell_{\infty})_p^{(0,\gamma)} = \ell_{\infty,p}(\log \ell)_{\gamma}$.
- If $X = \mathfrak{L}(E, F)$ and $G_n = \mathfrak{F}_n(E, F)$. Then, $(\mathfrak{L}(E, F))_p^{(0,\gamma)} = \mathfrak{L}_{\infty,p,\gamma}(E, F)$.
- Let $0 . If <math>X = L^p(\mathbb{T})$ and $G_n = T_n$. Then, $(L^p(\mathbb{T}))_q^{(0,\gamma)} = \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$ where

$$||f||_{\mathbf{B}^{0,\gamma}_{p,q}(\mathbb{T})} = ||f||_{L^p(\mathbb{T})} + \left(\int_0^1 ((1 - \log t)^{\gamma} \omega(f,t)_p)^q \frac{dt}{t} \right)^{1/q}.$$

⊳ R.A. DeVore, S.D. Riemenschneider, R.C. Sharpley, J. Funct. Anal. 33 (1979) 58–94.

⊳ F. Cobos, O. Domínguez, Studia Math. 223 (2014) 193–204.

• Representation theorem (Pietsch).- An element $f \in X$ belongs to X_p^{α} if and only if

$$f = \sum_{k=0}^{\infty} g_k, g_k \in G_{2^k},$$
 (1)

with

$$\sum_{k=0}^{\infty} (2^{k\alpha} \|g_k\|_X)^p < \infty. \tag{2}$$

Moreover,

$$||f||_{X_p^{\alpha}} \sim \inf \left(\sum_{k=0}^{\infty} (2^{k\alpha} ||g_k||_X)^p \right)^{1/p},$$

where the infimum is taking over all possible representations (1) such that (2) holds.

$$f = \sum_{k=0}^{\infty} g_k, g_k \in G_{2^k}, \|f\|_{X_p^{\alpha}} \sim \inf \left(\sum_{k=0}^{\infty} (2^{k\alpha} \|g_k\|_X)^p \right)^{1/p}.$$

$$f = \sum_{k=0}^{\infty} g_k, g_k \in G_{2^k}, \|f\|_{X_p^{\alpha}} \sim \inf \left(\sum_{k=0}^{\infty} (2^{k\alpha} \|g_k\|_X)^p \right)^{1/p}.$$

• Limiting representation theorem (Cobos-Resina, Fehér-Grässler).- Let $\gamma>-1/p$ and $\mu_k=2^{2^k}, k=0,1,...$ An element $f\in X$ belongs to $X_p^{(0,\gamma)}$ if and only if

$$f = \sum_{k=0}^{\infty} g_k, g_k \in G_{\mu_k}, \tag{3}$$

with

$$\sum_{k=0}^{\infty} (2^{k(\gamma+1/p)} \|g_k\|_X)^p < \infty.$$
 (4)

Moreover,

$$||f||_{X_p^{(0,\gamma)}} \sim \inf \left(\sum_{k=0}^{\infty} (2^{k(\gamma+1/p)} ||g_k||_X)^p \right)^{1/p},$$

where the infimum is taking over all possible representations (3) such that (4) holds.

Reiteration of approximation constructions

Let (G_n) be an approximation scheme in X. Since $G_n \subseteq X_p^{\alpha}$ and $G_n \subseteq X_q^{(0,\gamma)}$ for any $n \in \mathbb{N}_0$. Then, (G_n) determines an approximation scheme in X_p^{α} and $X_q^{(0,\gamma)}$.

Reiteration of approximation constructions

Let (G_n) be an approximation scheme in X. Since $G_n \subseteq X_p^{\alpha}$ and $G_n \subseteq X_q^{(0,\gamma)}$ for any $n \in \mathbb{N}_0$. Then, (G_n) determines an approximation scheme in X_p^{α} and $X_q^{(0,\gamma)}$.

Reiteration theorem (Pietsch).- Let $\alpha, \beta > 0$ and $0 < p, r \le \infty$. Then, we have with equivalence of quasi-norms

$$(X_p^\alpha)_r^\beta = X_r^{\alpha+\beta}.$$

Reiteration of approximation constructions

Let (G_n) be an approximation scheme in X. Since $G_n \subseteq X_p^{\alpha}$ and $G_n \subseteq X_q^{(0,\gamma)}$ for any $n \in \mathbb{N}_0$. Then, (G_n) determines an approximation scheme in X_p^{α} and $X_q^{(0,\gamma)}$.

Reiteration theorem (Pietsch).- Let $\alpha, \beta > 0$ and $0 < p, r \le \infty$. Then, we have with equivalence of quasi-norms

$$(X_p^{\alpha})_r^{\beta} = X_r^{\alpha+\beta}.$$

Reiteration theorem (Fehér-Grässler).- Let $0 < q, r \leqslant \infty, \gamma > -1/q$ and $\delta > -1/r$. Then, we have with equivalence of quasi-norms

$$(X_q^{(0,\gamma)})_r^{(0,\delta)} = X_r^{(0,\gamma+1/q+\delta)}.$$

We study the stability properties when we apply first the construction $(\cdot)_{p}^{\alpha}$ and then $(\cdot)_{q}^{(0,\gamma)}$ or vice versa.

⊳ F. Cobos, O. Domínguez, J. Approx. Theory 189 (2015) 43–66.

We study the stability properties when we apply first the construction $(\cdot)_{a}^{\alpha}$ and then $(\cdot)_{a}^{(0,\gamma)}$ or vice versa.

F. Cobos, O. Domínguez, J. Approx. Theory 189 (2015) 43–66.

THEOREM.- Suppose that $\alpha > 0, 0 < p, q \le \infty$ and $\gamma > -1/q$. Then,

$$(X_q^{(0,\gamma)})_p^{lpha}=X_p^{(lpha,\gamma+1/q)}$$
 with equivalence of quasi-norms, where

$$||f||_{X_p^{(\alpha,\gamma+1/q)}} = \left(\sum_{n=1}^{\infty} (n^{\alpha}(1+\log n)^{\gamma+1/q} E_n(f;X))^p n^{-1}\right)^{1/p}.$$

We study the stability properties when we apply first the construction $(\cdot)_p^{\alpha}$ and then $(\cdot)_q^{(0,\gamma)}$ or vice versa.

⊳ F. Cobos, O. Domínguez, J. Approx. Theory 189 (2015) 43–66.

THEOREM.- Suppose that $\alpha > 0, 0 < p, q \le \infty$ and $\gamma > -1/q$. Then, $(X_q^{(0,\gamma)})_p^{\alpha} = X_p^{(\alpha,\gamma+1/q)}$ with equivalence of quasi-norms, where

$$||f||_{X_p^{(\alpha,\gamma+1/q)}} = \left(\sum_{n=1}^{\infty} (n^{\alpha}(1+\log n)^{\gamma+1/q} E_n(f;X))^p n^{-1}\right)^{1/p}.$$

E. Pustylnik, Collect. Math. 57 (2006) 257–277.

We study the stability properties when we apply first the construction $(\cdot)_p^{\alpha}$ and then $(\cdot)_q^{(0,\gamma)}$ or vice versa.

⊳ F. Cobos, O. Domínguez, J. Approx. Theory 189 (2015) 43–66.

THEOREM.- Suppose that $\alpha>0, 0< p, q\leqslant \infty$ and $\gamma>-1/q$. Then, $(X_q^{(0,\gamma)})_p^\alpha=X_p^{(\alpha,\gamma+1/q)}$ with equivalence of quasi-norms, where

$$||f||_{X_p^{(\alpha,\gamma+1/q)}} = \left(\sum_{n=1}^{\infty} (n^{\alpha}(1+\log n)^{\gamma+1/q} E_n(f;X))^p n^{-1}\right)^{1/p}.$$

PROOF (OUTLINE).- The embedding $(X_q^{(0,\gamma)})_p^{\alpha} \hookrightarrow X_p^{(\alpha,\gamma+1/q)}$ is obtained via Jackson-type inequality

$$E_{2n-1}(f;X) \lesssim (1+\log n)^{-(\gamma+1/q)} E_n(f;X_q^{(0,\gamma)}), f \in X_q^{(0,\gamma)}, n \in \mathbb{N}.$$

We study the stability properties when we apply first the construction $(\cdot)_p^{\alpha}$ and then $(\cdot)_q^{(0,\gamma)}$ or vice versa.

⊳ F. Cobos, O. Domínguez, J. Approx. Theory 189 (2015) 43–66.

THEOREM.- Suppose that $\alpha>0, 0< p, q\leqslant \infty$ and $\gamma>-1/q$. Then, $(X_q^{(0,\gamma)})_p^\alpha=X_p^{(\alpha,\gamma+1/q)}$ with equivalence of quasi-norms, where

$$||f||_{X_p^{(\alpha,\gamma+1/q)}} = \left(\sum_{n=1}^{\infty} (n^{\alpha}(1+\log n)^{\gamma+1/q} E_n(f;X))^p n^{-1}\right)^{1/p}.$$

PROOF (OUTLINE).- The embedding $(X_q^{(0,\gamma)})_p^{\alpha} \hookrightarrow X_p^{(\alpha,\gamma+1/q)}$ is obtained via Jackson-type inequality

$$E_{2n-1}(f;X) \lesssim (1 + \log n)^{-(\gamma + 1/q)} E_n(f;X_q^{(0,\gamma)}), f \in X_q^{(0,\gamma)}, n \in \mathbb{N}.$$

Conversely, to obtain the embedding $X_{\rho}^{(\alpha,\gamma+1/q)}\hookrightarrow (X_{q}^{(0,\gamma)})_{\rho}^{\alpha}$ we use the representation theorem for $X_{\rho}^{(\alpha,\gamma+1/q)}$.

Let $\alpha > 0, 0 < p, q \leq \infty$ and $\gamma \geq -1/q$. The space $Z_{\alpha,p,\gamma,q}$ is formed by

Let
$$\alpha>0, 0< p, q\leqslant \infty$$
 and $\gamma\geqslant -1/q$. The space $Z_{\alpha,p,\gamma,q}$ is formed by all $\xi\in\ell_\infty$ for which

Let
$$\alpha>0, 0< p, q\leqslant \infty$$
 and $\gamma\geqslant -1/q$. The space $Z_{\alpha,p,\gamma,q}$ is formed by all $\xi\in\ell_\infty$ for which

 $\left(\sum_{n=1}^{\infty}\left[(1+\log n)^{\gamma}\left(\sum_{i=n}^{\infty}(j^{\alpha}\xi_{j}^{*})^{p}j^{-1}\right)^{1/p}\right]^{q}n^{-1}\right)^{1/q}<\infty.$

Let $\alpha > 0, 0 < p, q \leq \infty$ and $\gamma \geq -1/q$. The space $Z_{\alpha,p,\gamma,q}$ is formed by all $\xi \in \ell_{\infty}$ for which

$$\left(\sum_{j=1}^{\infty}\left[(1+\log n)^{\gamma}\left(\sum_{j=1}^{\infty}(j^{\alpha}\xi_{j}^{*})^{p}j^{-1}\right)^{1/p}\right]^{q}n^{-1}\right)^{1/q}<\infty.$$

When $q=1, Z_{\alpha,p,\gamma,1}$ is a small Lorentz sequence space.

→ A. Fiorenza, G.E. Karadzhov, Z. Anal. Anwend. 23 (2004) 657–681.

Let $\alpha > 0, 0 < p, q \leq \infty$ and $\gamma \geqslant -1/q$. The space $Z_{\alpha,p,\gamma,q}$ is formed by all $\xi \in \ell_{\infty}$ for which

$$\left(\sum_{p=1}^{\infty} \left[(1+\log n)^{\gamma} \left(\sum_{j=n}^{\infty} (j^{\alpha} \xi_{j}^{*})^{p} j^{-1} \right)^{1/p} \right]^{q} n^{-1} \right)^{1/q} < \infty.$$

THEOREM.- Suppose that $\alpha > 0, 0 < p, q \le \infty$ and $\gamma \ge -1/q$. Then we have with equivalence of quasi-norms

$$(X_p^{\alpha})_q^{(0,\gamma)} = X_q^{(\alpha,\gamma)} \cap \{f \in X : (E_n(f)) \in Z_{\alpha,p,\gamma,q}\}.$$

Let $\alpha > 0, 0 < p, q \le \infty$ and $\gamma \ge -1/q$. The space $Z_{\alpha,p,\gamma,q}$ is formed by all $\xi \in \ell_{\infty}$ for which

$$\left(\sum_{p=1}^{\infty} \left[(1+\log n)^{\gamma} \left(\sum_{j=n}^{\infty} (j^{\alpha} \xi_{j}^{*})^{p} j^{-1} \right)^{1/p} \right]^{q} n^{-1} \right)^{1/q} < \infty.$$

THEOREM.- Suppose that $\alpha > 0, 0 < p, q \le \infty$ and $\gamma \ge -1/q$. Then we have with equivalence of quasi-norms

$$(X_p^\alpha)_q^{(0,\gamma)}=X_q^{(\alpha,\gamma)}\cap\{f\in X:(E_n(f))\in Z_{\alpha,p,\gamma,q}\}.$$

In general, $(X_p^{\alpha})_q^{(0,\gamma)} \neq X_q^{(\alpha,\delta)}$.

Let $\alpha>0, 0< p, q\leqslant \infty$ and $\gamma\geqslant -1/q$. The space $Z_{\alpha,p,\gamma,q}$ is formed by all $\xi\in\ell_\infty$ for which

$$\left(\sum_{n=1}^{\infty}\left[\left(1+\log n\right)^{\gamma}\left(\sum_{j=n}^{\infty}(j^{\alpha}\xi_{j}^{*})^{p}j^{-1}\right)^{1/p}\right]^{q}n^{-1}\right)^{1/q}<\infty.$$

THEOREM.- Suppose that $\alpha > 0, 0 < p, q \le \infty$ and $\gamma \ge -1/q$. Then we have with equivalence of quasi-norms

$$(X_p^\alpha)_q^{(0,\gamma)}=X_q^{(\alpha,\gamma)}\cap\{f\in X:(E_n(f))\in Z_{\alpha,p,\gamma,q}\}.$$

In general, $(X_p^{\alpha})_q^{(0,\gamma)} \neq X_q^{(\alpha,\delta)}$. The following sharp embeddings hold

$$X_q^{(\alpha,\gamma+1/\min\{p,q\})} \hookrightarrow (X_p^\alpha)_q^{(0,\gamma)} \hookrightarrow X_q^{(\alpha,\gamma+1/\max\{p,q\})}.$$

In particular, $(X_q^{\alpha})_q^{(0,\gamma)} = X_q^{(\alpha,\gamma+1/q)}$.

Relation between smoothness of $D^k f$ and f

Let $\alpha, \gamma \in \mathbb{R}$ and $0 < p, q \leqslant \infty$. Let $(\varphi_j)_{j \in \mathbb{N}_0}$ be a dyadic resolution of unity. The Besov space $B_{p,q}^{\alpha,\gamma}(\mathbb{T})$ is formed by all $f \in \mathcal{D}'(\mathbb{T})$ such that

$$\|f\|_{\mathcal{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \left(\sum_{j=0}^{\infty} (2^{j\alpha}(1+j)^{\gamma} \|\mathfrak{F}^{-1}(\varphi_{j}\mathfrak{F}f)\|_{L^{p}(\mathbb{T})})^{q}\right)^{1/q} < \infty.$$

Here \mathfrak{F} and \mathfrak{F}^{-1} denotes the Fourier transform and inverse Fourier transform, respectively.

Relation between smoothness of $D^k f$ and f

Let $\alpha, \gamma \in \mathbb{R}$ and $0 < p, q \leqslant \infty$. Let $(\varphi_j)_{j \in \mathbb{N}_0}$ be a dyadic resolution of unity. The Besov space $B_{p,q}^{\alpha,\gamma}(\mathbb{T})$ is formed by all $f \in \mathcal{D}'(\mathbb{T})$ such that

$$\|f\|_{\mathcal{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \left(\sum_{j=0}^{\infty} (2^{j\alpha}(1+j)^{\gamma} \|\mathfrak{F}^{-1}(\varphi_{j}\mathfrak{F}f)\|_{L^{p}(\mathbb{T})})^{q}\right)^{1/q} < \infty.$$

Here \mathfrak{F} and \mathfrak{F}^{-1} denotes the Fourier transform and inverse Fourier transform, respectively.

Let $k \in \mathbb{N}$. It holds that if $f \in B_{p,q}^{k,\gamma}(\mathbb{T})$ then $D^k f \in B_{p,q}^{0,\gamma}(\mathbb{T})$.

$$\|f\|_{\mathbf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \|f\|_{L^p(\mathbb{T})} + \left(\int_0^1 (t^{-\alpha}(1-\log t)^\gamma \omega_M(f,t)_p)^q \frac{dt}{t}\right)^{1/q} < \infty$$

where $M \in \mathbb{N}$ with $M > \alpha$.

$$\|f\|_{\mathsf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \|f\|_{L^p(\mathbb{T})} + \left(\int_0^1 (t^{-\alpha}(1-\log t)^{\gamma}\omega_{\mathsf{M}}(f,t)_p)^q \frac{dt}{t}\right)^{1/q} < \infty$$

where $M \in \mathbb{N}$ with $M > \alpha$.

We have that $(L^p(\mathbb{T}))_q^{(\alpha,\gamma)} = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T}).$

$$\|f\|_{\mathsf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \|f\|_{L^p(\mathbb{T})} + \left(\int_0^1 (t^{-\alpha}(1-\log t)^{\gamma}\omega_{\mathsf{M}}(f,t)_p)^q \frac{dt}{t}\right)^{1/q} < \infty$$

where $M \in \mathbb{N}$ with $M > \alpha$.

We have that $(L^p(\mathbb{T}))_q^{(\alpha,\gamma)} = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T}).$

It holds that $B_{p,q}^{\alpha,\gamma}(\mathbb{T}) = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T})$ if $\alpha > 0$.

$$\|f\|_{\mathsf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \|f\|_{L^p(\mathbb{T})} + \left(\int_0^1 (t^{-\alpha}(1-\log t)^{\gamma}\omega_{\mathsf{M}}(f,t)_p)^q \frac{dt}{t}\right)^{1/q} < \infty$$

where $M \in \mathbb{N}$ with $M > \alpha$.

We have that $(L^p(\mathbb{T}))_q^{(\alpha,\gamma)} = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T}).$

It holds that $B^{\alpha,\gamma}_{p,q}(\mathbb{T})=\mathbf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})$ if $\alpha>0$. However, $B^{0,\gamma}_{p,q}(\mathbb{T})
eq \mathbf{B}^{0,\gamma}_{p,q}(\mathbb{T})$.

$$\|f\|_{\mathsf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \|f\|_{L^p(\mathbb{T})} + \left(\int_{\mathbb{T}}^1 (t^{-\alpha}(1-\log t)^{\gamma}\omega_M(f,t)_p)^q \frac{dt}{t}\right)^{1/q} < \infty$$

where $M \in \mathbb{N}$ with $M > \alpha$.

We have that $(L^p(\mathbb{T}))_q^{(\alpha,\gamma)} = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T}).$

It holds that $B_{p,q}^{\alpha,\gamma}(\mathbb{T}) = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T})$ if $\alpha > 0$. However, $B_{p,q}^{0,\gamma}(\mathbb{T}) \neq \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$.

For $\gamma > -1/2$, we have that $B_{2,2}^{0,\gamma+1/2} = \mathbf{B}_{2,2}^{0,\gamma}$.

$$\|f\|_{\mathsf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \|f\|_{L^{p}(\mathbb{T})} + \left(\int_{0}^{1} (t^{-\alpha}(1-\log t)^{\gamma}\omega_{M}(f,t)_{p})^{q} \frac{dt}{t}\right)^{1/q} < \infty$$

where $M \in \mathbb{N}$ with $M > \alpha$.

We have that $(L^p(\mathbb{T}))_q^{(\alpha,\gamma)} = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T}).$

It holds that $B_{p,q}^{\alpha,\gamma}(\mathbb{T})=\mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T})$ if $\alpha>0$. However, $B_{p,q}^{0,\gamma}(\mathbb{T})
eq \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$.

F. Cobos, O. Domínguez, J. Math. Anal. Appl. 425 (2015) 71−84.

For $\gamma > -1/2$, we have that $B_{2,2}^{0,\gamma+1/2} = \mathbf{B}_{2,2}^{0,\gamma}$. As a consequence, in order to have $D^k f \in \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$ we need that $f \in \mathbf{B}_{p,q}^{k,\gamma+\delta}(\mathbb{T})$ for some $\delta > 0$.

$$\|f\|_{\mathsf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})} = \|f\|_{L^p(\mathbb{T})} + \left(\int_0^1 (t^{-\alpha}(1-\log t)^\gamma \omega_{M}(f,t)_p)^q \frac{dt}{t}\right)^{1/q} < \infty$$

where $M \in \mathbb{N}$ with $M > \alpha$.

We have that $(L^p(\mathbb{T}))_q^{(\alpha,\gamma)} = \mathbf{B}_{p,q}^{\alpha,\gamma}(\mathbb{T}).$

It holds that $B^{\alpha,\gamma}_{p,q}(\mathbb{T})=\mathbf{B}^{\alpha,\gamma}_{p,q}(\mathbb{T})$ if $\alpha>0$. However, $B^{0,\gamma}_{p,q}(\mathbb{T})
eq \mathbf{B}^{0,\gamma}_{p,q}(\mathbb{T})$.

F. Cobos, O. Domínguez, J. Math. Anal. Appl. 425 (2015) 71−84.

For $\gamma > -1/2$, we have that $B_{2,2}^{0,\gamma+1/2} = \mathbf{B}_{2,2}^{0,\gamma}$. As a consequence, in order to have $D^k f \in \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$ we need that $f \in \mathbf{B}_{p,q}^{k,\gamma+\delta}(\mathbb{T})$ for some $\delta > 0$.

• (DeVore, Riemenschneider, Sharpley) If $f \in \mathbf{B}_{p,q}^{k,\gamma+1}(\mathbb{T})$ then $D^k f \in \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$.

THEOREM.- Let $1 and <math>\gamma > -1/q$. If $f \in \mathbf{B}_{p,q}^{k,\gamma+1/\min\{2,p,q\}}(\mathbb{T})$ then $D^k f \in \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$.

THEOREM.- Let $1 and <math>\gamma > -1/q$. If $f \in \mathbf{B}_{p,q}^{k,\gamma+1/\min\{2,p,q\}}(\mathbb{T})$ then $D^k f \in \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$.

PROOF.- Since the operator $D^k:W^k_p(\mathbb{T})\longrightarrow L^p(\mathbb{T})$ is bounded, then

$$D^k: (W_p^k(\mathbb{T}))_q^{(0,\gamma)} \longrightarrow (L^p(\mathbb{T}))_q^{(0,\gamma)} = \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T}).$$

THEOREM.- Let $1 and <math>\gamma > -1/q$. If $f \in \mathbf{B}_{n,q}^{k,\gamma+1/\min\{2,p,q\}}(\mathbb{T})$ then $D^k f \in \mathbf{B}_{n,q}^{0,\gamma}(\mathbb{T})$.

PROOF.- Since the operator $D^k:W^k_p(\mathbb{T})\longrightarrow L^p(\mathbb{T})$ is bounded, then

$$D^k:(W^k_p(\mathbb{T}))^{(0,\gamma)}_q\longrightarrow (L^p(\mathbb{T}))^{(0,\gamma)}_q=\mathbf{B}^{0,\gamma}_{p,q}(\mathbb{T}).$$

Applying reiteration constructions we derive that

$$(W_{p}^{k}(\mathbb{T}))_{q}^{(0,\gamma)} \longleftrightarrow (\mathbf{B}_{p,\min\{p,2\}}^{k}(\mathbb{T}))_{q}^{(0,\gamma)} = ((L^{p}(\mathbb{T}))_{\min\{p,2\}}^{k})_{q}^{(0,\gamma)} \\ \longleftrightarrow (L^{p}(\mathbb{T}))_{q}^{(k,\gamma+1/\min\{2,p,q\})} = \mathbf{B}_{p,q}^{k,\gamma+1/\min\{2,p,q\}}(\mathbb{T}).$$

THEOREM.- Let $1 and <math>\gamma > -1/q$. If $f \in \mathbf{B}_{p,q}^{k,\gamma+1/\min\{2,p,q\}}(\mathbb{T})$ then $D^k f \in \mathbf{B}_{p,q}^{0,\gamma}(\mathbb{T})$.

PROOF.- Since the operator $D^k:W^k_p(\mathbb{T})\longrightarrow L^p(\mathbb{T})$ is bounded, then

$$D^k:(W^k_p(\mathbb{T}))^{(0,\gamma)}_q\longrightarrow (L^p(\mathbb{T}))^{(0,\gamma)}_q=\mathbf{B}^{0,\gamma}_{p,q}(\mathbb{T}).$$

Applying reiteration constructions we derive that

$$(W_{p}^{k}(\mathbb{T}))_{q}^{(0,\gamma)} \longleftrightarrow (\mathbf{B}_{p,\min\{p,2\}}^{k}(\mathbb{T}))_{q}^{(0,\gamma)} = ((L^{p}(\mathbb{T}))_{\min\{p,2\}}^{k})_{q}^{(0,\gamma)} \\ \longleftrightarrow (L^{p}(\mathbb{T}))_{q}^{(k,\gamma+1/\min\{2,p,q\})} = \mathbf{B}_{p,q}^{k,\gamma+1/\min\{2,p,q\}}(\mathbb{T}).$$

REMARK.- The previous result is the best possible.

⊳ F. Cobos, O. Domínguez, preprint (2015).