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The Parabolic 1-Laplacian

Let E be an open set in R
N , and for T ∈ R

+ set ET = E × (0,T ].
Consider the quasi-linear, parabolic differential equation

ut − div
( Du

|Du|
)

= 0 locally in ET , (1)

and let (xo, to) ∈ ET .

Problem: What does it take for u to be continuous at (xo, to)?



Motivations - I

Formal limit of the parabolic p-laplacian with p > 1:

ut − div
(

|Du|p−2Du
)

= 0 locally in ET .

When 1 < p < 2, locally bounded solutions are locally Hölder

continuous.

• Y. Z. Chen and E. DiBenedetto, Arch. Rational Mech. Anal.

(1988);

• Y. Z. Chen and E. DiBenedetto, Arch. Rational Mech. Anal.

(1992).



Motivations - II

Geometric meaning:

Consider v : Ω → R and let

Γv ,c := {x ∈ Ω : v(x) = c}

denote a level set of v , which we suppose is a smooth

hypersurface, with unit normal ν = Dv
|Dv | . The mean curvature of

Γc is

H(Γv ,c) = div(ν) = div

(

Dv

|Dv |

)

.

Therefore, our equation can be rewritten as

ut = H(Γu).



Motivations - III

In order to perform an efficient image reconstruction, Perona

and Malik suggest taking the noisy image uo as initial datum for

a diffusion equation such as

ut − div(a(|Du|2)Du) = 0,

with a(s) positive and decreasing to zero as s → ∞, and under

no-flux boundary conditions.

Small diffusion near discontinuities in uo are supposed to lead

to edge preservation, while large diffusion elsewhere would

somehow mollify the brightness function and take out noise.

• P. Perona and J. Malik, IEEE Transactions on Pattern

Analysis and Machine Intelligence, (1990).



If a(s) = s−1/2, then formally the previous equation becomes

ut − div
( Du

|Du|
)

= 0,

which is commonly called total variation flow, TV-flow for short.

• F. Andreu, C. Ballester, V. Caselles, J.M. Mazón and J.S.

Moll;

• G. Bellettini and M. Novaga;

• B. Kawohl;

• A. Chambolle and P.L. Lions;

• ...



Motivations - IV

Connection with the Logarithmic Diffusion Equation?

ut −∆ ln u = 0

This is the formal limit as m → 0 of

ut −∆

(

um − 1

m

)

= 0.

There is a well-known connection between the porous medium

and the parabolic p-Laplacian both for m > 0, p > 1 and

−1 < m < 0, p < 1.

• R.G. Iagar and A. Sánchez, Journal of Mathematical

Analysis and Applications, (2008);

• R.G. Iagar, A, Sánchez and J.L. Vázquez, Journal De

Mathématiques Pures Et Appliquées, (2007).



The natural setting of (1) is the BV space with a proper

interpretation of Du as a measure and ‖Du‖ as its total

variation. See

• F. Andreu-Vaillo, V. Caselles and J.-M. Mazón, Parabolic

quasilinear equations minimizing linear growth functionals,

2004.

It is apparent that in general, no continuity statement can be

made for functions in BV . Therefore, we work with a smaller

class of solutions.



Notion of Solution

u ∈ Cloc

(

0,T ;L2
loc(E)

)

∩ L1
loc

(

0,T ;W 1,1
loc (E)

)

(2)

Moreover, for every compact set K ⊂ E and every sub–interval

[t1, t2] ⊂ (0,T ], u satisfies

∫

K

uϕdx

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∫

K

[

− uϕt +
Du

|Du| · Dϕ
]

dxdt = 0, (3)

for all bounded testing functions

ϕ ∈ W
1,2
loc

(

0,T ;L2(K )
)

∩ L1
loc

(

0,T ;W 1,1
o (K )

)

. (4)

Here Du is the gradient in the space variable only and, for u in

the class (2),

Du

|Du| =
{

Du
|Du| if |Du| > 0;

0 if |Du| = 0.



There Exist Unbounded Solutions

One verifies that any function of the tipe

F (|x |, t) = N − 1

|x | (at + b) + f (|x |),

for a,b ∈ R and f an a.e., differentiable function of its argument,

is a weak solution of (1)–(4), for N ≥ 3, provided Ft and F|x|

have the same sign. Explicit examples include

F (|x |, t) = N − 1

|x | (t − 1) for t ∈ (0,1),

F (|x |, t) = N − 1

|x | (1 − t) + sin
1

|x | for t ∈ (0,
1

N − 1
).

One verifies that they satisfy (3), for N ≥ 3, and yet they are

discontinuous at the origin.



Boundedness vs Unboundedness

The existence of unbounded solutions is not a surprise: when

1 < p < 2N
N+2 , there exist unbounded solutions to the parabolic

p-Laplacian.

On the other hand, one verifies that the function

u(x1, x2) = arctan
x2

x1
, x1 > 0,

is a stationary solution to (1) which is bounded, but

discontinuous at the origin. Hence, boundedness is not enough

to ensure continuity. This is not a great surprise: from the

logarithmic diffusion equation, we already know that extra

conditions are required.



Variational Integrals with Linear Growth

- I

A hint comes from the elliptic setting. Consider the problem

inf
v∈A

∫

Ω
φ(Dv)dx −

∫

Ω
fvdx ,

where φ : RN → R is a non-negative convex, sufficiently smooth

function satisfying

• φ(0) = 0, φp(0) = 0,

• |p| − λ ≤ φ ≤ |p| for some λ > 0,

• limt→∞
φ(tp)
t|p| = 1.

A is a suitable class, Ω is a bounded domain with sufficiently

smooth boundary, and f is a given function (for example in L∞).



A Result by Hardt and Kinderlehrer

An example which is covered by the previous assumptions is

φ(p) =











1

2
|p|2 for |p| ≤ 1

|p| − 1

2
for |p| ≥ 1.

• R. Hardt and D. Kinderlehrer, Birkhäuser, 1989

prove the following result

Theorem
A local solution u is continuous at a point xo ∈ Ω if and only if

lim
r→0

r

∫

Br (xo)
|Du|dx = 0,

where Br (y) denotes the ball of radius r centered at y ∈ E .



DeGiorgi Classes

A crucial point in Hardt and Kinderlehrer’s argument is that

local solutions belong to a proper DeGiorgi class, namely they

satisfy an inequality of the type

∀y ∈ Ω, ∀BR(y) ⊂ Ω, ∀0 < ρ < R, ∀k ∈ R,

∫

Bρ(y)
|D(u − k)±|dx ≤ γ

(R − ρ)

∫

BR(y)
|(u − k)±|dx

+ χ(1 + R−1|k |)|A±
k ,R |.

Here γ, χ are positive constants, |Σ| denotes the Lebesgue

measure of Σ, and

A±
k ,R ≡ {x ∈ BR(y) : (u − k)± > 0},

(u − k)± = {±(u − k) ∧ 0}.



Technical Tools

• Just by belonging to DeGiorgi classes, local solutions are

locally bounded;

• The condition about the average of the gradient yields

continuity, because it implies that the averages {ūρ} of the

function u in balls of radius ρ form a Cauchy sequence as

ρ → 0.

Moreover, the approximate continuity of u plays a fundamental

role.



A Suggestion from Hardt and

Kinderlehrer

It is not a matter of a PDE, and not even of a variational

integral: the point is that u belongs to a proper functional class,

namely the DeGiorgi class.

Could it be the case also in the parabolic setting?



Variational Integrals with Linear Growth

- II

Let u ∈ L1
loc(ET ) be such that u(·, t) is of bounded variation in E

for t ∈ (0,T ). Assume that the total variation ‖Du(·, t)‖E of the

measure Du(·, t), is in L1
loc(0,T ) and consider the variational

integral

∫ T

0

[
∫

E

uϕτ dx + ‖Du‖E (τ)

]

dτ ≤
∫ T

0

‖D(u + ϕ)‖E (τ)dτ (5)

for all ϕ ∈ C∞
o (ET ).



Variational Integrals with Linear Growth

- II

Local minima of such a functional need not be in the functional

class (2) and Du(·, t) is, in general, meant in the sense of

measures for a.e. t ∈ (0,T ).
However, if such a minimum is in the class (2), then it is a local,

weak solution of to the 1-Laplacian equation (1) by

• V. Bögelein, F. Duzaar and P. Marcellini, SIAM J. Imaging

Sci., to appear;

• V. Bögelein, F. Duzaar, J. Kinnunen and P. Marcellini,

personal communication.

Hence, a necessary and sufficient condition for a locally

bounded u to be continuous at some (xo, to) ∈ ET continues to

hold for minima of parabolic variational integrals of the form (5).



Singular Parabolic DeGiorgi Classes - I

Introduce the cylinders

Qρ(θ) = Bρ × (−θρ,0],

where θ is a positive parameter to be chosen as needed. If

θ = 1 we write Qρ. For a point (y , s) ∈ R
N+1 we let

[(y , s) + Qρ(θ)] be the cylinder of “vertex” at (y , s) and

congruent to Qρ(θ), i.e.

[(y , s) + Qρ(θ)] = Bρ(y) × (s − θρ, s].

Let C
(

Qρ(θ)
)

denote the class of all non-negative, piecewise

smooth, cutoff functions ζ defined in Qρ(θ), vanishing outside

Bρ, such that ζt ≥ 0 and satisfying

|Dζ|+ ζt ∈ L∞
(

Qρ(θ)
)

.



Singular Parabolic DeGiorgi Classes -

II

The singular parabolic DeGiorgi class, [DG](ET ; γ), is the

collection of all u in the functional class (2), satisfying

sup
s−θρ≤t≤s

∫

Bρ(y)
(u − k)2

±ζ(x , t)dx

+

∫∫

[(y ,s)+Qρ(θ)]
|D(u − k)±|ζdxdτ

≤ γ

∫∫

[(y ,s)+Qρ(θ)]

[

(u − k)±|Dζ|+ (u − k)2
±|ζτ |

]

dxdτ

+

∫

Bρ(y)
(u − k)2

±ζ(x , s − θρ)dx

for a positive constant γ, for all cylinders [(y , s) + Qρ(θ)] ⊂ ET ,

all k ∈ R, and all ζ ∈ C
(

[(y , s) + Qρ(θ)]
)

.



The General Perspective

Proposition

Let u be a local, weak solution to (1) in the sense of (2)–(4).

Then u ∈ [DG](ET ; γ), for γ = 2.

Proposition

Let u in the class (2) be a minimum of the parabolic variational

integral (5). Furthermore, assume that ut ∈ L2(ET ). Then

u ∈ [DG](ET ; γ), for some γ>0.

We have followed a typical path, namely

PDE ⇒ Minima of Variational Integral ⇒ DeGiorgi Classes



Theorem
Let u ∈ [DG](ET ; γ), for some γ>0, and assume that it is locally

bounded. Then, u is continuous at some (xo, to) ∈ ET , if and

only if

lim sup
ρց0

ρ−
∫

−
∫

[(xo ,to)+Qρ]
|Du|dxdτ = 0. (6)

Remark

• The theorem gives a necessary and sufficient condition for

continuity at a single given point, not in a neighborhood.

• Condition (6) cannot be replaced by the weaker condition

lim sup
ρց0

ρ−
∫

−
∫

[(xo ,to)+Qρ]
|Du|dxdτ = α > 0.

• We rely only on the fact that u ∈ [DG](ET ; γ), for some

γ>0.

• (6) is the natural generalization of Hardt-Kinderlehrer’s

condition



A Remark about the Modulus of

Continuity

Condition (6) provides no information on the modulus of

continuity of u at (xo, to).
Consider the two stationary solutions of (1)–(4), in a

neighborhood of the origin of R2,

u1(x1, x2) =







1

ln x1
for x1 > 0

0 for x1 ≤ 0;

u2(x1, x2) =

{ √
x1 for x1 > 0

0 for x1 ≤ 0.

They can be regarded as equibounded near the origin. They

both satisfy (6), and exhibit quite different moduli of continuity at

the origin.



This occurrence is in line with a remark of Evans:

• L.C. Evans, Contemp. Math. (2007).

A sufficiently smooth solution of the elliptic 1-Laplacian

equation is a function whose level sets are surfaces of zero

mean curvature.

Thus, if u is a solution, so is ϕ(u) for all continuous monotone

functions ϕ(·). This implies that a modulus of continuity cannot

be identified solely in terms of an upper bound of u.



A Heuristic Justification

Suppose that in

sup
−θρ≤t≤0

∫

Bρ

(u − k)2
±ζ(x , t)dx +

∫∫

Qρ(θ)
|D(u − k)±|ζdxdτ

≤ γ

∫∫

Qρ(θ)

[

(u − k)±|Dζ|+ (u − k)2
±|ζτ |

]

dxdτ

+

∫

Bρ

(u − k)2
±ζ(x ,−θρ)dx

we can estimate

∫∫

Qρ(θ)
|D(u − k)±|ζdxdτ ≥ γ

ρp−1

ωp−1

∫∫

Qρ(θ)
|D(u − k)±|pζpdxdτ

where ω is the oscillation of u in Qρ(θ).



Then, we would obtain

sup
−θρ≤t≤0

∫

Bρ

(u − k)2
±ζ(x , t)dx

+ γ
ρp−1

ωp−1

∫∫

Qρ(θ)
|D(u − k)±|pζpdxdτ

≤ γ

∫∫

Qρ(θ)

[

(u − k)±|Dζ|+ (u − k)2
±|ζτ |

]

dxdτ

+

∫

Bρ

(u − k)2
±ζ(x ,−θρ)dx ,

and by known techniques, u would be locally Hölder

continuous.



On the other hand, by the Hölder inequality,

−
∫

−
∫

Qρ(θ)
|D(u − k)±|pζpdxdτ ≥

[

−
∫

−
∫

Qρ(θ)
|D(u − k)±|ζdxdτ

]p

.

Combining the previous inequalities, yields

γω ≥ ρ−
∫

−
∫

Qρ(θ)
|D(u − k)±|ζdxdτ.



A Possible Generalization - I

Consider quasi-linear evolutions equations of the type

u ∈ Cloc

(

0,T ;L2
loc(E)

)

∩ L1
loc

(

0,T ;W 1,1
loc (E)

)

(7)

ut − div A(x , t ,u,Du) = B(x , t ,u,Du) weakly in ET , (8)

where the functions A : ET × R
N+1 → R

N and

B : ET × R
N+1 → R are only assumed to be measurable and

subject to the structure conditions

Co|Du| − C ≤A(x , t ,u,Du) · Du ≤ C1|Du|+ C

|A(x , t ,u,Du)| ≤ C(1 + |u|)
|B(x , t ,u,Du)| ≤ C(1 + |u|)

(9)

for given positive constants Co ≤ C1 and C.



A Possible Generalization - II

The first of (9) does not insure, in general that the equation in

(8) is parabolic. For example the vector field

A(x , t ,u,Du) =
Du

|Du|
(

1 − 1

|Du|
)

satisfies the first of (9) but its modulus of ellipticity changes sign

at |Du| = 1.

Parabolicity is insured if one requires that A is such that the

truncations ±(u − k)± are sub-solutions of (8). This in turn is

insured if, in addition to (9) one requires that

A(x , t , ξ, η) · η ≥ 0



What about Boundedness?

Proposition

Let u ∈ [DG]±(ET , γ), let r > N and assume that u ∈ Lr
loc(ET ).

Then, there exists a positive constant γo depending only upon

N, γ, r , such that

sup
Kρ(y)×[s,t]

u± ≤ γo

(

ρ

t − s

)
N

r−N (

∫ t

2s−t

∫

K4ρ(y)
ur
± dxdτ

)
1

r−N

+ γo
t − s

ρ

for all cylinders

K4ρ(y)× [s − (t − s), s + (t − s)] ⊂ ET .

The constant γo(N, γ, r) → ∞ as either r → max{1;N}, or

r → ∞.



Future Work: Open Problems

For p > 1 a local upper bound on |up| suffices to establish that

up is locally Hölder continuous in ET , with Hölder constant and

exponent depending on such a local upper bound and p.

However, even if |up| is locally bounded in ET , uniformly in p,

the Hölder constants and exponents deteriorate as p ց 1, in

line with the previous remarks.



Because of this structural difference between p-Laplacian and

1-Laplacian equation, a topology by which (1) can be identified

as a rigorous limit of the parabolic p-Laplacian with p > 1

represents a challenging problem.

Phrased in a different way: if bounded solutions for p > 1 are

Hölder continuous and for p = 1 may have any modulus of

continuity, in which sense can we talk about stability?

What is the connection between the condition that ensures

continuity for solutions to (1) and the condition that gives the

analogous result for solutions to the logarithmic diffusion

equation?



For the moment ...

Thank you for your attention!
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