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Introduction

In this talk we discuss generalizations of a paper with Kaj Nyström and
Niklas Lundström in Boundary Harnack Inequalities for Operators of p
Laplace Type in Reifenberg Flat Domains, Proceedings of Symposia in
Pure Mathematics 79 (2008), 229-266,
regarding boundary Harnack inequalities, the Martin boundary
problem, and boundary regularity for non-negative solutions to
equations of p-Laplace type vanishing on the boundary of certain sets
in Euclidean n space. Our generalization of the above paper (joint with
Kaj Nyström) is currently entitled Quasi- linear PDE’s and
low-dimensional sets. This paper is concerned with the above
problems on codimension > 1 sets and for certain values of p. In this
case the novelty of our work is that more traditional boundary value
problems (eg, boundary value problems for the Laplace operator)
require that the boundary have a certain fatness in order that a
solution exist.
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For example in R3 the Laplace operator does not see a line segment
while if p > 2 there are positive solutions (weak) to the p Laplace
equation which vanish on the line segment and are p harmonic
elsewhere in a neighborhood containing this segment.

Structure Assumptions for Operators of p Laplace Type.

Let p, β, α ∈ (1,∞) and γ ∈ (0,1). Let A = (A1, ...,An) : Rn × Rn → Rn,
assume that A = A(y , η) is continuous in Rn × (Rn \ {0}) and that
A(y , η), for fixed y ∈ Rn, is continuously differentiable in ηk , for every
k ∈ {1, ...,n}, whenever η ∈ Rn \ {0}. Assume that the following
conditions are satisfied whenever y , x , ξ ∈ Rn and η ∈ Rn \ {0}:

(i) α−1|η|p−2|ξ|2 ≤
∑n

i,j=1
∂Ai
∂ηj

(y , η)ξiξj ≤ α|η|p−2|ξ|2,

(ii) |A(x , η)− A(y , η)| ≤ β|x − y |γ |η|p−1,

(iii) A(y , η) = |η|p−1A(y , η/|η|).

(1)
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We say that u is A-harmonic or a weak solution to ∇ ·A(x ,∇u) = 0 in a
bounded open set G provided u ∈W 1,p(G) and whenever θ ∈W 1,p

0 (G)∫
〈A(y ,∇u(y)),∇θ(y)〉dy = 0, (2)

Note that if A(x , η) = |η|p−2η, then u is said to be p-harmonic in G.

Definition 1. Let n, m, be integers such that 1 ≤ m ≤ n− 1. Let Σ ⊂ Rn

be a closed set and let r0, δ > 0 be given. We say that Σ is
(m, r0, δ)-Reifenberg flat (in Rn) if there exists, whenever w ∈ Σ and
0 < r < r0, an m dimensional hyperplane Λ = Λm(w , r) such that

h(Σ ∩ B(w , r),Λ ∩ B(w , r)) ≤ δr .

In this display h(·, ·) denotes Hausdorff distance between the two sets.
In general if E ,F ⊂ Rn then the Hausdorff distance between E ,F is,

h(E ,F ) = max(sup{d(y ,E) : y ∈ F}, sup{d(y ,F ) : y ∈ E}).
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Definition 2. Σ is said to be (m, r0, δ)-
Reifenberg flat with vanishing constant if in addition, for each ε > 0,
there exists r̃ = r̃(ε) > 0 such that whenever x ∈ Σ ∩ B(w , r) and
0 < ρ < r̃ , there is an m dimensional hyperplane Λ′ = Λ′m(x , ρ) through
x with

h(Σ ∩ B(x , ρ),Λ′ ∩ B(x , ρ)) ≤ ερ.
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Remark. m Reifenberg flat sets Σ are well
approximated on all small scales by m dimensional
planes. Still Σ may not have an m dimensional tangent
plane (in the classical sense) at any point in it, no
matter how small δ is. For example given
θ, 0 < θ < π/2, let a−1 = 2 + 2 cos θ. Let J1 = [0,a]. Let
J2 be the line segment with endpoints (a,0) and
(a + a cos θ, a sin θ). Let J3 be the line segment with
endpoints, (a + a cos θ, a sin θ) and (1− a,0). Let
J4 = [1− a,1]. Note that all four intervals have
sidelength a. Also J2, J3 make angles θ, π − θ with (0,
1). On each of these line segments we can now
repeat the process (i.e replace each segment by four
equal segments with the first and last segments
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contained in the given segment and with the second,
third segments making angles θ, π − θ with the given
segment). Continuing in this way we get a (1,1, δ)
Reifenberg flat set provided θ is small enough.
Moreover this set does not have a tangent line at any
point in it.
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Main Results

We require more assumptions on A for our theorems when
2 ≤ m ≤ n − 2 and n ≥ 4. Thus we first consider the case when m = 1
.

Theorem A
Fix p,n − 1 < p <∞, and n ≥ 3. Let Σ ⊂ Rn be a closed set and
assume that Σ is (1, r0, δ)-Reifenberg flat (in Rn) for some r0, δ > 0. Let
w ∈ Σ,0 < r < r0. Assume that u, v are positive A-harmonic functions
in B(w ,4r) \Σ, continuous on B(w ,4r) and u = 0 = v on Σ∩B(w ,4r).
Then there exist δ̄ = δ̄(p,n, α, β, γ) > 0, c̄ = c̄(p,n, α, β, γ) ≥ 1 and
σ̄ = σ̄(p,n, α, β, γ) > 0, such that if 0 < δ < δ̄, then∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c
(
|y1 − y2|

r

)σ
whenever y1, y2 ∈ B(w , r/c) \ Σ.
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To state a theorem similar to Theorem A when 2 ≤ m ≤ n − 2, we
suppose A in addition to the structure conditions listed in (1) satisfies
either (3) (a) or (3) (b).

(a) There exists 0 < λ <∞ with |∂Ai
∂ηj

(x , η)− ∂Ai
∂η′j

(x , η′)| ≤ λ |η − η′||η|p−3

for x ∈ Rn,1 ≤ i , j ≤ n and η, η′ ∈ Rn \ {0} with 1
2 |η| ≤ |η

′| ≤ 2|η|.

(b) A(x , η) = κ(x , η) |〈C(x)η, η〉|p−2 C(x)η, x ∈ Rn, η ∈ Rn \ {0}, where
C(x) is a linear transformation of Rn and κ(x , ·), is homogeneous
of degree 0 in η whenever x ∈ Rn.

(3)
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Theorem B
Let 2 ≤ m ≤ n − 2,n ≥ 4, and n −m < p <∞, be given. Let Σ ⊂ Rn

be a closed (m, r0, δ)-Reifenberg flat set (in Rn) for some r0, δ > 0. Let
w , r , r0,u, v be defined as in Theorem A relative to Σ. Suppose also
that in addition to (1) (i)− (iii) that A satisfies either 3(a) or (b). Then
the conclusion of Theorem A is valid with δ̄, c̄, σ̄ replaced by δ′, c′, σ′.
Constants now may also depend on m, λ.

Remark. Theorems A,B, imply u/v is bounded and σ Hölder
continuous in B(w , r/c) \ Σ. That is, for some c′,∣∣∣∣u(y)

v(y)
− u(z)

v(z)

∣∣∣∣ ≤ c′
(
|z − y |

r

)σ u(z)

v(z)
(4)

whenever y , z ∈ B(w , r/c′) and 0 < r ≤ r0. Thus the conclusions in
Theorems A, B, are usually referred to as ‘ boundary Harnack
inequalities.’
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In order to state corollaries to Theorems A,B we remark that if u is
as in these theorems, then there exists a positive Borel measure µ on
B(w ,4r) ∩ Σ with ∫

〈A(x ,∇u),∇φ〉dx = −
∫
φdµ (5)

whenever φ ∈ C∞0 (B(w ,4r)). Using Theorems A,B, we prove

Corollary A Let u, v ,m,p, σ,Σ, be as in Theorems A,B, and µ, ν, the
corresponding measures as in (5). Then there exists f in
Cσ(Σ ∩ B̄(w , r)) with dµ = f dν.

Corollary B Let n, m, p, Σ, r0, A, w , u, µ, be as in Corollary A and
suppose that in addition, Σ ∩ B(w ,4r0) is m Reifenberg flat with
vanishing constant. Then

lim
r→0

µ(B(x , tr))

µ(B(x , r))
= tm uniformly for x ∈ Σ ∩ B̄(w , r0) and t ∈ [1/2,1].
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In the language of T. Toro and coauthors, a measure µ is said to be
asymptotically optimally doubling on Σ ∩ B̄(w , r0) if the conclusion of
Corollary B holds for µ. For optimal doubling when m = n − 1 see
Avelin, Lundström, and Nyström, Optimal doubling, Reifenberg
fllatness and operators of p-Laplace type, Nonlinear Anal. 74 (2011),
no. 17, 5943-5955.

Theorem C
Let n, m, be integers such that 1 ≤ m ≤ n − 2 and let p,
n−m < p <∞, be given. Let Σ ⊂ Rn be a closed set and assume that
Σ is (m, r0, δ)-Reifenberg flat (in Rn) for some r0, δ > 0. Then there
exists δ∗ = δ∗(p,n, α, β, γ) such that the following is true whenever
0 < δ < δ∗, w ∈ Σ,0 < r < r0. Suppose that û, v̂ are positive
A-harmonic functions in B(w ,4r) \ Σ, continuous on B̄(w ,4r) \ {w}
and û = 0 = v̂ on ∂(B(w ,4r) \ Σ) \ {w}. For 1 < m ≤ n − 2 assume
also that either 3(a) or (b) hold. If 0 < δ < δ∗, then û(y) = χv̂(y) for all
y ∈ B(w ,4r) \ Σ and for some constant χ.
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.
Remark. Theorems A, B and C for m = n − 1 were proved by
Lundström, Nyström, and myself in the paper mentioned earlier.
Theorem C implies that the A Martin boundary agrees with the
topological boundary of Σ
see R.S. Martin, Minimal positive harmonic functions, Trans. Amer.
Math. Soc 49 (1941), 137-172.

Outline of the Proof of Theorems A, B

In the proof of Theorems A, B, we in general follow the proof scheme
in the paper of Lewis, Lundström, and Nyström, mentioned earlier.
However proofs are more involved and often involve considerable
expertise. In fact for a general A as in (1), our argument breaks down
in one key place when 1 < m ≤ n − 2. To begin the proof of Theorems
A, B, we note that the (m, r0, δ) Reifenberg flat assumption in
Theorems A, B and the assumptions on p imply that Σ is uniformly fat
in the sense of p capacity (for p capacities see Adams and Hedberg,
Function spaces and Potential Theory, Springer 314, 1996)
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Using uniform p fatness we first prove
Lemma A Let r0, δ,m,n,p,Σ,w , r , and u be as in Theorems A, B.
Then

(i) rp−n
∫

B(w ,r/2)

|∇u|p dy ≤ c ( max
B(w ,r)

u)p.

Furthermore, there exists σ = σ(p,n,m, α, β, γ) ∈ (0,1) such that if
x , y ∈ B(w , r), then

(ii) |u(x)− u(y)| ≤ c
(
|x−y |

r

)σ
max

B(w ,2r)
u.

Remark. The first inequality is a standard Caccioppoli inequality while
the last inequality follows from uniform p fatness of Σ together with
Wiener estimates for A harmonic functions as in
Heinonen, Kilpelainen, Martio, Nonlinear Potential Theory of
Degenerate Elliptic Equations, Dover Publications, 2006),
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.

Lemma B Let u,Σ,w , r and all other data be as in Lemma A. Then
there exists c = c(p,n,m, α, β, γ), 1 ≤ c <∞, such that if r̃ = r/c, then

max
B(w ,r̃)

u ≤ c u(ar̃ (w))

where ar̃ (w) is a point in B(w , r̃) whose distance to Σ is ≈ r̃ .

Lemma C Let u,Σ,w , r and all other data be as in Lemma B. Then
there exists σ̂ ∈ (0,1], depending only on p,n,m, α, β, γ, such that if
x , y ∈ B(ŵ , r̂/2), B(ŵ ,4r̂) ⊂ B(w ,4r) \ Σ, then

c−1 |∇u(x)−∇u(y)| ≤ (|x − y |/r̂)σ̂ max
B(ŵ ,r̂)

|∇u|

≤ c r̂−1 (|x − y |/r̂)σ̂ min
B(ŵ ,2r̂)

u.

Lemma D Let u,Σ,w , r , r̃ and all other data be as in Lemma B. If µ is
the measure corresponding to u as in (5), then

r̃p−nµ(B(w , r̃)) ≈ u(ar̃ (w))p−1.
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Lemma E

Let O ⊂ Rn be an open set, 1 < p <∞, and A1,A2 be as in (1) . Let û1
be A1-harmonic and let û2 be A2-harmonic in O. Let ã ≥ 1, y ∈ O and
suppose that

1
ã

û1(y)

d(y , ∂O)
≤ |∇û1(y)| ≤ ã

û1(y)

d(y , ∂O)
.

Let ε̃−1 = (cã)(1+σ̂)/σ̂, where σ̂ is as in Lemma C. If

(1− ε̃)L̂ ≤ û2

û1
≤ (1 + ε̃)L̂ in B(y , 1

100d(y , ∂O))

for some L̂,0 < L̂ <∞, then for c = c(p,n, α, β, γ) suitably large,

1
cã

û2(y)

d(y , ∂O)
≤ |∇û2(y)| ≤ cã

û2(y)

d(y , ∂O)
.
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.
Lemmas B − E are essentially copied verbatim from earlier work of
Lewis and Nystrom. Lemma E whose proof is elementary given
Lemmas A- D is of fundamental importance in the proof of Theorems
A, B. Armed with Lemmas A− E we proceed by the following steps:
Step 1 Let u, v ,p,w , r and all other quantities be as in Theorems A or
B. Let

Σ = Rm × {(0, . . . ,0)} = {x = (x ′, x ′′) : x ′′ = (0, . . . ,0)}.

Then there exists c ≥ 1 (depending only on the data) such that if
u(ar̃ (w)) ≈ v(ar̃ (w)) ≈ 1,

(6) c−1 ≤ u(x)/v(x) ≤ c whenever x ∈ B(w , r/c) \ Σ.

(6) is the inequality we have not been able to prove for a general A as
in (2) when 2 ≤ m ≤ n − 2. For m = n − 1 we were able to prove this
estimate in the paper mentioned earlier, using more or less standard
barriers, i.e by constructing a subsolution or supersolution to (2) which
lies below or above a given solution and has the desired properties.
For m = 1 we use a technique of Bennewitz and Lewis in
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.
On the Dimension of p Harmonic Measure, Ann. Acad. Sci. Fenn. 30
(2005), 459-505.

Unfortunately this technique only works for m = 1 or if the PDE is
rotationally invariant.

To handle the case when 2 ≤ m ≤ n − 2. we use (3) to construct a
not so standard barrier. To make the construction let A = A(η) be as in
(1) and set Ãj = Am+j ,1 ≤ j ≤ n −m. Given p > n −m let ũ be the
‘fundamental solution’ in Rn−m corresponding to Ã with pole at x = 0.
That is, ũ is continuous on Rn−m with ũ(0) = 0 and locally in
W 1,p(Rn−m). Moreover∫

Rn−m
〈Ã(∇ũ),∇φ〉dx = −φ(0) (7)

whenever φ ∈ C∞0 (Rn−m). Existence and uniqueness of ũ satisfying (7)
are not so difficult to prove. We show that

ũ(z) = |z|ξ ũ( z
|z|) and |∇ũ|(z) ≈ ũ(z)/|z|, z ∈ Rn−m \ {(0, . . . ,0)} (8)
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where ξ = p−n+m
p−1 . Let û(x ′, x ′′) = ũ(x ′′) when x = (x ′, x ′′) ∈ Rn.

Remark. Note that û ≡ 0 on Rm × {(0, . . . ,0)} so can be used as a
comparison function in (6).

To outline the proof of (6) when 2 ≤ m ≤ n − 2, r = 1, and w = 0, let
Cρ(0) = {x = (x ′, x ′′) : |x ′| ≤ ρ, |x ′′| ≤ ρ}.

h(x) = (eû(x) − 1)(1− |x ′|2) when x ∈ C1(0)

Then under either assumption (3) (a) or (b) we show in our new paper
that

h(x) ≤ c v(x) whenever x ∈ C1/2(0). (9)

Here v is A harmonic in C4(0) with v(0, . . . ,0,1) = 1 and continuous
boundary value 0 on (Rm × {(0, . . . ,0)}) ∩ C4(0). To finish the proof of
(6) in this situation let H be the A harmonic function in
C4(0) \ {(x ′,0, . . . ,0) : |x ′| ≤ 1} with continuous boundary values
H(x ′,0) ≡ 0 when |x ′| ≤ 1 and H ≡ 1 on ∂C4(0). From the maximum
principle for A harmonic functions we find for v ≤ c′ as above that
v ≤ c′H in C1(0). In view of (8), (9), we see that
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in order to finish the proof of (6) it suffices to show for some c
depending only on the data that

H(x) ≈ h(x) ≈ û(x) ≈ |x ′′|ξ for x ∈ C1/c(0) \ Σ. (10)

To do this we begin by showing that H satisfies the fundamental
inequality :

c−1d(x ,Σ)−1 H(x) ≤ |∇H(x)| ≤ cd(x ,Σ)−1H(x) (11)

when x ∈ C2(0) \ (Rm × {(0, . . . ,0)} where c ≥ 1 depends only on the
data. Second we proceed to step 2.
Step 2: In this step we finish the proof of Theorems A, B when Σ is the
m dimensional plane in Step 1. To outline this step we first prove
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Lemma F
Let Σ be the m dimensional plane in Step 1, w ∈ Σ and let u1,u2, be A
harmonic in B(w ,4r) \ Σ for fixed p as in Theorem 1 with continuous
boundary values, u1 ≡ 0 ≡ u2 on Σ ∩ B(w ,4r). Suppose also for some
c1 ≥ 1 and x ∈ B(w , r/c1) that

c−1
1 ui(x)/d(x ,Σ) ≤ |∇ui |(x) ≤ c1ui(x)/d(x ,Σ), (12)

when i = 1,2. There exists c2 depending on c1 and the other data in
Theorem 1 but independent of u1,u2 such that if a,b ∈ [0,∞), then
(a|∇u1|+ b|∇u2|)p−2 is an A2 weight with constant ≤ c2 on cubes
contained in B(w , r/c2).

Lemma G Let u1,u2 be as in Lemma F. Then Theorem A is valid with
u, v replaced by u1,u2 when Σ is an m dimensional plane.

Using Lemma F we get Lemma G by using boundary Harnack
inequalities for solutions to degenerate elliptic PDE in divergence form
whose degeneracy is given in terms of an A2 weight.
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These inequalities are derived in
Fabes, C. Kenig & R. Serapioni, The local regularity of solutions to
degenerate elliptic equations, Comm. Partial Differential Equations 7
(1982), 77–116.

E. Fabes, D. Jerison , C. Kenig, The Wiener test for degenerate elliptic
equations, Ann. Inst. Fourier (Grenoble) 32 (1982), 151–182.

E. Fabes, D. Jerison, C. Kenig, Boundary behaviour of solutions to
degenerate elliptic equations, Conference on harmonic analysis in
honor of Antonio Zygmund, Vol I, II Chicago, Ill, 1981, 577-589,
Wadsworth Math. Ser, Wadsworth Belmont CA, 1983.

From (8), (11), we deduce that Lemmas F ,G can be applied with
H = u1, û = u2,w = 0, and r = 1. Doing this we get (10) and so also
(6) in C1/c(0) provided c ≥ 1 is large enough depending only on the
data.

Finally in step 2 we prove Theorems A, B for u, v when Σ is the m
dimensional plane in Step 1 and u satisfies
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(12) in B(w , r/c1) \ Σ with ui replaced by u. To do this let u(·, t) be the
A harmonic function in B(w , r/c1) \Σ with continuous boundary values
tv + (1− t)u.

We assume as we may that v(ar̃ (w)) ≈ u(ar̃ (w)). From Lemmas B-E
and the boundary Harnack inequality in (6) it follows that if ε is small
enough and t ∈ [1− ε,1] then u(·, t) satisfies (12) in B(w , r/c1) with
constants as in Lemma E. For t ∈ [1− ε,1] we can then apply Lemmas
F and G to get that the conclusion of Theorems A, B hold with v
replaced by u(·, t). From Theorem A it follows easily that u(·,t)

u is Hölder
continuous in B(w , r̃) \ Σ. Hölder continuity of this ratio leads to an
induction type argument where we alternatively use Lemmas E,F, G,
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and then Theorems A, B in intervals [tm, tm+1] with tm+1 − tm ≥ ε1 for
some ε1 > 0 to get first that u(·, tm) satisfies (12) with constants
independent of m and thereupon that u(·, t)/u is Hölder continuous for
t ∈ [tm, tm+1]. Now ε1 can be chosen independently of m so eventually
we get from Lemma E that |∇v(x)| ≈ v(x)/d(x ,Σ) and thereupon that
Theorems A, B hold for u, v . and Σ an m dimensional plane.

Step 3 In this step we prove Theorems A, B in the generality stated. In
this case we use Theorems A, B when Σ is an m plane and Lemma E
to show that u, v satisfy the fundamental inequality (12). We also show
for given a,b > 0 and some c′ ≥ 1 that (a|∇u|+ b|∇v |)p−2 is an A2
weight on sub cubes of B(w , r/c′) with constants which are
independent of a,b. Armed with these facts, we can conclude
Theorems A, B from the boundary Harnack Inequalities of Fabes et al,
mentioned earlier.
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Outline of the Proof of Corollary A

Let u, v ,n,m,p,Σ,w , r0,A, σ be as in Theorems A, B, and let µ, ν, be
the corresponding measures as in (5). If z ∈ B(w ,2r0) \ Σ. Recall from
(4) with w replaced by z that Theorems A, B imply∣∣∣∣u(x)

v(x)
− u(y)

v(y)

∣∣∣∣ ≤ c
u(x)

v(x)

(
|x − y |

r

)σ
(13)

whenever x , y ∈ B(z, r) \ Σ and 0 < r ≤ r0/c. From (13) we deduce

that 0 < f (z) = lim
y→z

u(y)

v(y)
exists and that (13) holds with u(y)

v(y) replaced
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by f (z). So there exists c′ depending only on the data such that if
0 < s < r and x ∈ B(z, s) \ Σ, then

u(x)(1− c′(s/r)σ) < f (z) v(x) < u(x)(1 + c′(s/r)σ). (14)

Set

τ1 =
f (z)

(1 + c′(s/r)σ)
, ṽ(x) = τ1v , and h = u − ṽ > 0 in B(z, s) \ Σ.

If ψ ∈ C∞0 (B(z, s)) and θ1, θ2, are small positive numbers we put
φ = max{h − θ1,0}θ2ψ. Using (1) we see that

0 ≤
∫
〈A(x ,∇u)− A(x ,∇ṽ),∇(max{h − θ1,0}θ2)〉ψ dx

Also from the usual limiting argument we find that φ can be used as a
test function in the weak formulation of A harmonicity for both u, ṽ .
Doing this, using (2), (5), and letting first θ1→0, and then θ2→0, we
conclude that∫

ψ (τp−1
1 dν − dµ) ≤

∫
B(z,s)

〈A(x ,∇u)− A(x ,∇ṽ),∇ψ〉dx ≤ 0,
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where we have also used p − 1 homogeneity of A in (1) (iii) to deduce
the measure corresponding to ṽ . From arbitrariness of ψ it follows that
τp−1

1 ν ≤ µ on B(z, s) ∩ Σ. Similarly if τ2 = f (z)
(1−c′(s/r)σ) then µ ≤ τp−1

2 ν.

on B(z, s) ∩ Σ. From this discussion we see that µ, ν are mutually
absolutely continuous on B(w ,4r0) and if dµ = k dν, then

τp−1
1 ≤ k(ẑ) ≤ τp−1

2 when ẑ ∈ B(z, s) ∩ Σ and k(z) = f (z)p−1.

Taking logarithms it follows that

c−1(s/r)σ ≤ | log(k(ẑ)/k(z))| ≤ c(s/r)σ

for some c ≥ 1 depending only on the data. From this display and
arbitrariness of s, z we conclude that Corollary A is valid.
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Proof of Corollary B

The proof of Corollary B is by contradiction. If this corollary is false
there exists tj ∈ [1/2,1], xj ∈ Σ ∩ B̄(w , r0),0 < rj ≤ 10−j r0, for
j = 1, . . . , and ε > 0 for which

ε ≤
∣∣∣∣µ(B(xj , tj rj))

µ(B(xj , rj))
− tm

j

∣∣∣∣ . (15)

We assume as we may that xj→x̂ ∈ Σ ∩ B̄(w , r0) as j→∞ and
tj→t ∈ [1/2,1] as j→∞. Let

uj(x) =
u(xj + rjx)

u(arj (xj))
when x ∈ Ωj = {x : xj + rjx ∈ B(w ,2r0) \ Σ}.

Let Aj(x , η) = A(xj + rjx , η) when x , η ∈ Rn. From p− 1 homogeneity of
A in (1) (iii) we see that uj is a weak solution to ∇ · Aj(x ,∇uj) = 0 in
Ωj . Note that Aj has the same structure constants as A in (i), (iii), of
(1). while β in (ii) is replaced by βrγj .
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From the vanishing Reifenberg flat assumption in Corollary B we see
that for a subsequence of (Ωj) (also denoted (Ωj)), we have ∂Ωj→Λ,
an m dimensional plane through 0, as j→∞, uniformly in the Hausdorff
distance sense on compact subsets of Rn. From Lemmas A, B, as well
as Harnack’s inequality, and the NTA property of Ωj we see that given
R > 0, there exists j0 such that uj is Hölder continuous with exponent σ
and uniformly bounded Hölder norm in B(0,R) when j ≥ j0. Also given
K , a compact subset of Rn \ Λ, we find from Lemma C that ∇uj is σ̂
Hölder continuous on K with a uniformly bounded Hölder norm for j
large enough. Furthermore, from these lemmas, we conclude that (uj)
is bounded in the norm of W 1,p(B(0,R)).
Using these facts we obtain from Ascoli’s theorem that subsequences
of (uj), (∇uj) (also denoted (uj), (∇uj)), converge uniformly on
compact subsets of Rn,Rn \ Λ, to ū,∇ū. From weak compactness of
W 1,p we may also assume that uj→ū weakly in W 1,p(B(0,R)) for each
R > 0. Then ū is σ Hölder continuous in Rn and ū ≡ 0 on Λ. Also it is
easily seen that ū is Â harmonic in Rn \ Λ with Â(η) = A(x̂ , η), η ∈ Rn.
To reach a contradiction we assume, as we may, that Λ = Rm × {0},
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We claim that ū is a constant multiple of û defined after (8). This claim
is proved by first applying Theorems A or B with u, v replaced by ū, û,
and then letting r→∞. Using our claim and Lemma D we deduce that
the measure, say µ̄, corresponding to ū, is a constant multiple of
Lebesgue measure on Rm × {0, . . . ,0}. Let µj be the measure
corresponding to uj , for j = 1,2, . . . Using the above convergence
results, we easily deduce that µj→µ̄ weakly as measures. Thus

lim sup
j→∞

µj(B(0, tj))

µj(B(0,1))
≤ µ̂(B̄(0, t))

µ̂(B(0,1))
= tm ≤ lim inf

j→∞
µj(B(0, tj))

µj(B(0,1))
. (16)

Finally we note from p − 1 homogeneity of A that

µj(B(0, tj))

µj(B(0,1))
=
µ(B(xj , tj rj))

µj(B(xj , rj))
for j = 1,2, . . . (17)

Using (15)-(17) we deduce that

ε ≤ lim
j→∞

∣∣∣∣ µ(B(xj , tj rj))

µ(B(xj , rj))
− tm

j

∣∣∣∣ = lim
j→∞

∣∣∣∣ µj(B(0, tj))

µj(B(0,1))
− tm

j

∣∣∣∣ = 0. (18)

We have reached a contradiction. Hence Corollary B is valid.
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Outline of the Proof of Theorem C

The proof of Theorem C is similar to the proof of Theorems A, B, in
that we first prove this theorem when Σ = Rm × {(0, . . . ,0)},A = A(η),
and w = 0. To do this we first construct an A Martin function u in
B(0,4r) \ Σ satisfying

|∇u(x)| ≈ u(x)/d(x ,Σ), when x ∈ B(0, r) \ Σ. (19)

Let v be another Martin function relative to 0 and
B(0,4r) \ [Rm × {(0, . . . ,0)}]. From Theorems A, B, and the maximum
principle for A harmonic functions it is easily shown that

u(x)/v(x) ≈ u(ar (0))/v(ar (0)) (20)
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Also using (19) and Theorems A, B, we can essentially repeat our
argument in step 2 involving u(·, t) only now u(·, t), t ∈ (0,1) is A
harmonic in B(0,4r) \ [B(0, s) \ Σ] with continuous boundary values =
tu + (1− t)v .

in order to obtain first that v also satisfies (19) with constants
depending only on the data in B(0, r) \ Σ . Arguing as in the proof of
Lemmas F and G, we then obtain for some ĉ ≥ 1, â ∈ (0,1),
depending only on the data,that

osc (t) ≤ ĉ
(s

t

)â
osc (s), s ≤ t ≤ r . (21)
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where

m(t) = inf
∂B(0,t)

u
v
, M(t) = sup

∂B(0,t)

u
v
, osc (t) = M(t)−m(t),

Theorem C follows from (21) for A ∈ Mp(α), if we let s→0. The general
case of Theorem C follows from the above baseline case, in a way
similar to the proof of the general case of Theorems A, B. In fact for
2 ≤ m ≤ n − 2, one can also use a blowup type argument as in the
proof of Corollary B to get Theorem C (thanks to 3 (a), (b)).

Food For Thought

Let u,Σ be as in Theorems A or B. We would like to know what extra
conditions on Σ imply that the measure µ corresponding to u as in (5)
is absolutely continuous with resepect to m dimensional Hausdorff
measure on Σ. For example suppose m = 1,n = 3, while
Σ = {(x , y , z) : z = 0 and y = φ(x),−∞ < x <∞}. If φ is Lipschitz
with compact support is it true that dµ = fdHm on Σ where f is
integrable with respect to Hm measure.
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If in addition, φ′ is Hölder continuous, is it true that dµ = f dHm where f
is Hölder continuous. If m = n − 1 the answer to both these questions
is yes.

Thanks for Listening!!!
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