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Ω b Rn is a smooth domain.

First let us consider polyharmonic operators. The

Navier BC for (−∆)k, k ∈ N, are defined as fol-

lows:

u
∣∣∣
∂Ω = ∆u

∣∣∣
∂Ω = ∆2u

∣∣∣
∂Ω = · · · = ∆k−1u

∣∣∣
∂Ω = 0.

The corresponding operator (−∆Ω)kN can be de-

fined by its quadratic form

((−∆Ω)kNu, u) =
∑
j λ

k
j · |(u, ϕj)|2.

Here, λj and ϕj are eigenvalues and eigenfunc-

tions of the Dirichlet Laplacian in Ω, respectively.



The Dirichlet BC for the operator (−∆)k are
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∂u
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∣∣∣∣∣∂Ω
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where n is the unit exterior normal vector to ∂Ω.

The quadratic form of corresponding operator

(−∆Ω)kD is the restriction of the quadratic form

for (−∆)k in Rn to functions supported in Ω:

((−∆Ω)kDu, u) =
∫
Rn
|ξ|2k|Fu(ξ)|2dξ,

where F is the Fourier transform.



Now for arbitrary s > −1 we define the “Navier”

fractional Laplacian by the quadratic form

QNs,Ω[u] = ((−∆Ω)sNu, u) :=
∑
j λ

s
j · |(u, ϕj)|2

and the “Dirichlet” fractional Laplacian by the

quadratic form

QDs,Ω[u] = ((−∆Ω)sDu, u) :=
∫
Rn
|ξ|2s|Fu(ξ)|2dξ

with domains, respectively,

Dom(QNs,Ω) = {u ∈ D′(Ω) : QNs [u] <∞};

Dom(QDs,Ω) = {u ∈ S ′(Rn) : suppu ⊂ Ω, QDs [u] <∞}.



For s = 1, these two operators evidently coincide. We emphasize that,
in contrast to (−∆Ω)sN , the operator (−∆Ω)sD is not the sth power of
the Dirichlet Laplacian for s 6= 1.

In the case 0 < s < 1 both the operators (−∆Ω)sN and (−∆Ω)sD were
considered in many articles on semilinear equations.
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Recall that the Sobolev space Hs(Rn) = W s
2(Rn),

s ∈ R, is the space of distributions u ∈ S ′(Rn)

with finite norm

‖u‖2s =
∫
Rn

(
1 + |ξ|2

)s |Fu(ξ)|2 dξ,

Also we introduce the space

H̃s(Ω) = {u ∈ Hs(Rn) : suppu ⊂ Ω}.

Note that H̃s(Ω) coincides with Hs
0(Ω) only for

s− 1
2 /∈ Z.



Caffarelli and Silvestre (2007) connected the fractional Laplacian of
order σ ∈ (0,1) in Rn with generalized Dirichlet-to-Neumann map. In
particular, for any u ∈ H̃σ(Ω) the function wDσ (x, y) minimizing the
weighted Dirichlet integral

EDσ (w) =

∞∫
0

∫
Rn

y1−2σ|∇w(x, y)|2 dxdy

over the set

WD
σ (u) =

{
w(x, y) : EDσ (w) <∞ , w

∣∣∣
y=0

= u

}
,

satisfies

QDσ,Ω[u] = Cσ · EDσ (wDσ ). (1)

Moreover, wDσ (x, y) is the solution of the BVP

−div(y1−2σ∇w) = 0 in Rn × R+; w
∣∣∣
y=0

= u,

and for sufficiently smooth u

(−∆Ω)σDu(x) = −Cσ · lim
y→0+

y1−2σ∂yw
D
σ (x, y), x ∈ Ω. (2)



Stinga and Torrea (2010) developed this approach in quite general
situation. In particular, it was shown that for any u ∈ H̃σ(Ω) the
function wNσ (x, y) minimizing the energy integral

ENσ (w) =

∞∫
0

∫
Ω

y1−2σ|∇w(x, y)|2 dxdy

over the set

WN
σ,Ω(u) = {w(x, y) ∈ WD

σ (u) : w
∣∣∣
x∈∂Ω

= 0},
satisfies

QNσ,Ω[u] = Cσ · ENσ (wNσ ). (3)

Moreover, wNσ (x, y) is the solution of the BVP

−div(y1−2σ∇w) = 0 in Ω× R+; w
∣∣∣
y=0

= u; w
∣∣∣
x∈∂Ω

= 0,

and for sufficiently smooth u it turns out that

(−∆Ω)σNu(x) = −Cσ · lim
y→0+

y1−2σ∂yw
N
σ (x, y). (4)



In a similar way, we connect negative fractional Laplacians of order

−σ ∈ (−1,0) with generalized Neumann-to-Dirichlet map. Namely, let

u ∈ Dom(QD−σ,Ω). Consider the problem of minimizing the functional

ẼD−σ(w) =

∞∫
0

∫
Rn

y1−2σ|∇w(x, y)|2 dxdy − 2
〈
u,w

∣∣∣
y=0

〉
over the set WD

−σ, that is closure of smooth functions on Rn × R̄+

with bounded support, with respect to EDσ (·). We recall that u can be

considered as a compactly supported functional on Hσ(Rn), and thus

the duality
〈
u,w

∣∣∣
y=0

〉
is well defined.

Denote the minimizer of ẼD−σ by wD−σ(x, y). Then formulae (1) and (2)

imply relations

QD−σ,Ω[u] = −C−1
σ · ẼD−σ(wD−σ); (−∆Ω)−σD u(x) = C−1

σ wD−σ(x,0), x ∈ Ω,

(5)

that give the “dual” variational characterization of (−∆Ω)−σD .



Remark. Note that for sufficiently smooth u the function wD−σ solves

the Neumann problem

−div(y1−2σ∇w) = 0 in Rn × R+; lim
y→0+

y1−2σ∂yw = −u.

Analogously, formulae (3) and (4) imply the “dual” variational char-

acterization of (−∆Ω)−σN . Namely, the function wN−σ(x, y) minimizing

the functional

ẼN−σ(w) =

∞∫
0

∫
Ω

y1−2σ|∇w(x, y)|2 dxdy − 2
〈
u,w

∣∣∣
y=0

〉
over the set

WN
−σ,Ω(u) = {w(x, y) ∈ WD

−σ : w
∣∣∣
x/∈Ω

= 0},

satisfies

QN−σ,Ω[u] = −C−1
σ · ẼN−σ(wN−σ); (−∆Ω)−σN u(x) = C−1

σ wN−σ(x,0). (6)



Theorem 1. Let s > −1, s /∈ N0. Then for u ∈ Dom(QDs,Ω),

u 6≡ 0, the following relations hold:

QNs,Ω[u] > QDs,Ω[u], if 2k < s < 2k + 1, k ∈ N0; (7)

QNs,Ω[u] < QDs,Ω[u], if 2k − 1 < s < 2k, k ∈ N0. (8)

1. Let s = σ ∈ (0,1). We construct extensions wDσ and wNσ as
described above.
We evidently have WN

σ,Ω ⊂ W
D
σ and ẼNσ = ẼDσ

∣∣∣
WN
σ,Ω

. Therefore, formulae

(1) and (3) provide

QNs,Ω[u] = Cσ · inf
w∈WN

σ,Ω

ẼNσ (w) > Cσ · inf
w∈WD

σ

ẼDσ (w) = QDs,Ω[u].

To complete the proof, we observe that for u 6≡ 0 the function wNσ
cannot be a solution of the homogeneous equation in the whole half-
space, since such a solution is analytic in the half-space. Thus, it
cannot provide inf

w∈WD
σ

ẼDσ (w), and (7) follows.



2. Let −1 < s < 0. We define σ = −s ∈ (0,1) and construct

extensions wD−σ and wN−σ. All arguments above hold, but

the inequality is reversed by the “−” sign in (5) and (6).

3. Now let s > 1, s /∈ N. We put k = bs−1
2 c and define for

u ∈ H̃s(Ω)

v = (−∆)ku ∈ H̃s−2k(Ω), s− 2k ∈ (−1,0) ∪ (0,1).

Note that v 6≡ 0 if u 6≡ 0. Then we have

QNs,Ω[u] = QNs−2k,Ω[v], QDs,Ω[u] = QDs−2k,Ω[u],

and the conclusion follows from cases 1 and 2.

Remark. Frank and Geisinger (preprint, 2013) proved a general result
which gives Theorem 1 for s ∈ (0,1) with > sign.



Next, we take into account the role of dilations in Rn. We

denote by F (Ω) the class of smooth and bounded domains

containing Ω. If Ω′ ∈ F (Ω), then any u ∈ Dom(QDs,Ω) can

be regarded as a function in Dom(QDs,Ω′), and the corre-

sponding form QDs,Ω′[u] does not change. In contrast, the

form QNs,Ω′[u] does depend on Ω′ ⊃ Ω. However, roughly

speaking, the difference between these quadratic forms dis-

appears as Ω′→ Rn.

Theorem 2. Let s > −1. Then for u ∈ Dom(QDs,Ω) the
following facts hold:

QDs,Ω[u] = inf
Ω′∈F (Ω)

QNs,Ω′[u], if 2k < s < 2k + 1, k ∈ N0;

QDs,Ω[u] = sup
Ω′∈F (Ω)

QNs,Ω′[u], if 2k − 1 < s < 2k, k ∈ N0.



Remark. Assume that 0 ∈ Ω and put αΩ = {αx : x ∈ Ω}.
Then the proof shows indeed that

QDs,Ω[u] = lim
α→∞Q

N
s,αΩ[u] for any u ∈ Dom(QDs,Ω).

Now put uα(x) = α
n−2s

2 u(αx). Then the scaling shows that

QDs,Ω[uα] ≡ QDs,Ω[u] = lim
α→∞Q

N
s,Ω[uα] for any u ∈ H̃s(Ω).

Moreover, this result was recently sharpened (RM & AN,

2015). Namely,

∣∣∣QDs,Ω[uα]−QNs,Ω[uα]
∣∣∣ = O(α−(n+2s)), as α→∞.

Using this estimate we established the Brezis–Nitenberg type result for
semilinear equations with Navier Laplacian and critical growth of the
right-hand side.



We also obtain a pointwise comparison result.

Theorem 3. Let 0 < |s| < 1, and let u ∈ Dom(QDs,Ω),

u > 0, u 6≡ 0. Then the following relations hold:

(−∆Ω)sNu > (−∆Ω)sDu, if 0 < s < 1;

(−∆Ω)sNu < (−∆Ω)sDu, if −1 < s < 0.

Here all inequalities are understood in the sense of distri-

butions.

Remark. Fall (preprint, 2012) proved this for s = 1
2 and

for smooth u.



We prove Theorem 3 for s = σ ∈ (0,1). First, let u ∈ C∞0 (Ω). We

construct extensions wDσ and wNσ described above. Since wDσ vanishes

at infinity, wDσ (x, t) > 0 for t > 0 by the maximum principle. Then the

strong maximum principle gives

W := wDσ − wNσ > 0 in Ω× R+.

After changing of the variable t = y2σ the function W (x, t) solves

∆xW + 4s2t
2s−1
s Wtt = 0 in Ω× R+; W

∣∣∣
t=0

= 0. (9)

The differential operator in (9) satisfies the assumptions of the bound-

ary point lemma (Maz’ya et al., 2011) at any point (x0,0) ∈ Ω× {0}.
Thus, we have

lim inf
y→0+

y1−2σ∂yW (x, y) = 2σ · lim inf
t→0+

∂tW (x, t) > 0.

For u ∈ H̃s(Ω) the statement holds by approximation argument.

The case s < 0 is managed in a similar way.


