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Theorem (Riesz-Thorin). Let (R, u) and (S,v) be o-finite measure

spaces. Let 1< pg, p1,qo, g1 < oo and a linear operator T such that
T:Lp(R, ) — Lg(S,v) with norm Mg and
T:Ly(R,pu) — Ly (S,v) with norm M.

Then T : Ly(R, 1) — Ly(S,v) with norm M < M3=YM{ whenever
0<60<1and
1 1-6 6 1 1-6 6
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3

A = A is intermediate if Agn A; = A< Ap + A;. It is an interpolation
space if, whenever T € L(Ag + A1, Ag + A1) is such that T € L(Ag, Ao)
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Peetre's K- and J-functionals: For every t >0,

K(t,a;Ao,Al) = inf{||ao\|A0 + tHal‘lAl fa=ap+a,a; EAJ'},
aeA0+A1,

J(t,a) = max(|lal 4, tlalla,), 2a€Aon AL
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(Classical) real interpolation spaces: Let 0<f<1and 1< g < oo.

1/q

:{aeA0+A1:a:[0mu(t)Cit with (fooo[teJ(t,u(t))]tht)l/q<oo}.

Given a function f, let f*(t) =inf{s>0: pu({x e Q:|f(x)|>s}) < t}.

—Lorentz spaces L, 4(€2). Q o-finite, 1 < p, g < oo.
£1/p a dt)!/e
o= 7 [0 @1° )~ (Lens Lo = Lijog
—Lorentz-Zygmund spaces L, q(log L)»(£2). Q o-finite, 1 < p,qg < o0, beR.

11l 5.q,6 = (fo [£Y°(1 + log t])2F* ()] dt)
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1/q
(AosA1)g 4 = {aEA0+A1 allg, = (fo [ 0K (t, )]q dt) < Oo}

:{aer+A1:a:/0°ou(t)i_t with (/(;oo[t_ej(t,u(t))]q Cit)l/q<00}.

What if 6 =0 or 6 =17

Butzer, Berens, Springer-Verlag, 1967:
One can take 0 < § <1 whenever g = oo for the K-method and whenever
g =1 for the J-method.
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1 1/p
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A. Fiorenza, G. E. Karadzhov, J. Anal. Appl. 23 (2004), 657-681:

[£]l ~ sup (1+]|logt)™PK(t,f; Lo, L1).
O<t<oo
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(1) = o) (1) = {
For0<f<1land1<q< oo,
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] o q dt\"/*
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B. Jawerth, M. Milman, Mem. Amer. Soc. 440 (1991): If Q is finite,

*° dt
HfHL(IogL) ~ /1 t lK(tv f; Lole)T‘
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— [=] B dt 1/‘7
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An application
Let F(f) = (f(m)). It is well-known that

F:Li([0,27]) — loo and

F: L([0,27]) —> bo.

Interpolating by the classical method,
F:L,([0,27]) — £y, 1< p<2 (Hausdorff-Young).
Interpolating by the (1, g; K)-method, Gomez and Milman obtained that

F: L(log L)([0,27]) — ¢4 (Hardy-Littlewood), and
F: L(logL)4([0,27]) — £1(log£)1/q, g >0 (Bennett).

Interpolating by the (0,2; J)-method,

F: L(log L)—1/2([0727T]) = 627w(log£),1/2.



0=0~ Aqu;J
Ordered setting

/ (AO > Al) 0 =1~ ALq;K

Function parameter ~ Ag ¢ 4

Limiting interpolation methods
(6=0,0=1)
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Limiting J-spaces for general couples

Let A= (Ao, A1) be a Banach couple and let 1< g < 0o. The space

Ags = (Ao, Al)q;J is defined as the collection of vectors a € Ag + A; for
which there exists a strongly measurable function u(t) with values in
Ao N A1 such that

b t
a= [ u(t)dT (convergence in Ap + A1) (1)
0

and

(fol[f‘”(fa“m)]"it)l/q+(f1°°J<t,u<t>>qdt)l/qm. @

t
The norm HaHAq_j is the infimum in (2) over all possible representations
(1) of a.

o 1/
Classical definition (fo [t0U(t, u(t))]q %) 7 ¢ .
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- /_\q;J extends /_\qu;J to general couples and (Ao,Al)q;J = (Al,Ao)q;J.

- (A0>A1)1;_/ = AO n Al.

Theorem. For any 1 < p,q,r < oo and 0< 6 <1 we have that

AonAr = (Ao, A1), = (Ao Al)g = (Ao Ar), = Ao+ A

I I
(AOaAl)l;J (onAl)oo;K
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Lorentz-Zygmund spaces L, 4(log L),(£2).

q dt l/q
Ilpa= ([ [+ loge®r (0] <)
L(p,q)(log L)p(2) is defined replacing f* by f**(t) = %fot f*(s)ds.
—>If 1<g<ooand 0<6 <1 then (Loo(£2),L1(2))g , = L1/6,4(2).

—In the limiting ordered case, if (£, ) is a finite measure space then

(Leo(Q),L1(2))0.g.0 = Loo g(log L)-1(Q)  ([CFKU]).

—In the limiting case for general couples, if (£, 1) is a o-finite measure
space then

(Loo (£2), L1(£2)) gt = Loo,q(log L)-1(R)NL(1,q) (log L)-1().



Interpolation of compact operators

Theorem (Krasnosel'skii). Let (R, x) and (S,v) be o-finite measure
spaces and let 1 < pg, p1, Go, g1 < o0, with gg < oo, and consider a linear
operator T such that

T:Lp(R, i) — Lg(S,v) is compact and
T:Ly(R,pu) — Lg(S,v) is bounded.

Then T: L,(R, 1) — Lg(S,v) is compact if 0 <6 <1 and

1 1-60 0 1 1-6 0
+ — and = + —.
P Po P1 q do q1
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TeL(A,B)and T:A; - B;is compact for any j, then
T: (Ao A1)y 4 ~ (Bo, B1)g , is also compact.

Ay ———= By

| |

(Ao, A1)y, —— (Bo, B1)g

L

A—B
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Classical setting. 1992, M. Cwikel; F. Cobos, T. Kihn, T. Schonbek: If
TeL(A B) and T:A; - B; is compact for any j, then
T: (Ao, A1)y 4 ~ (Bo, B1)g , is also compact.

AOABO

L

_ T o=
Ao,qy — Bo,gs

Al—T>Bl

Limiting methods in the ordered setting (Ay = A1, By = Bi) ([CFKU]):
» If T:A; —» By is compact, then T : ’Z\l,q;K - E_El,q;K is also compact,
whereas the compactness of T : Ag — By is not sufficient.
» If T:Ag— By is compact, then T : Ao,q;J - Bo’q;_] is also compact,
whereas the compactness of T : A; — Bj is not sufficient.
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Limiting methods in the general setting. The compactness of one
restriction is not sufficient.

Theorem. Let A= (Ag, A1) and B = (By, By) be Banach couples, let
TeL(A B)andlet1<qg<oo. If T:A;— B;is compact for
j=0and 1, then so are



» Let A be a Banach space, let B = (By, By) be a Banach couple and
let 1< g<oo. If Tisa linear operator such that 7: A — B; is
continuous for j =0,1

T/ BO

\T;

By

A



» Let A be a Banach space, let B = (By, By) be a Banach couple and
let 1< g<oo. If Tisa linear operator such that 7: A — B; is

continuous for j =0,1
}7 %
\T;

and any of the restrictions is compact, then T : A — B,k is also
compact.

A
By



» Let A be a Banach space, let B = (By, By) be a Banach couple and
let 1< g<oo. If Tisa linear operator such that 7: A — B; is
continuous for j =0,1

T/ BO

\T;

By

A

and any of the restrictions is compact, then T : A — B,k is also
compact.

» Let A= (Ap,A;) be a Banach couple, let B be a Banach space and
let 1< g<oco. If Tisa linear operator such that T: A; - B is
continuous for j =0,1

Ao+
7

A

and any of the restrictions is compact, then T : A, — B is also
compact.



L. M. Fernandez-Cabrera, A. Martinez, Studia Math. (2014) 187-196 :

» Let A be a Banach space, let B = (By, By) be a Banach couple and
let 1< g<oo. If Tis a linear operator such that T: A — By + B is
compact, then sois T : A — Bg.k.

» Let A= (Ao, A1) be a Banach couple, let B be a Banach space and
let 1< g<oo. If Tis a linear operator such that T: AgnA; —» B is

compact, then sois T : Ag; — B.
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foo(t) if0<t<l,
2= (t) ifl<t<oo.

A (t) = le0e=)(¢) :{
For0<f<1land1<qc< oo,

oo oA th l/q
(Aos A g0 = aeA0+A1:HaH9,q,A=('[O (004 (1)K (t, a)] T) ceol

J. Gustavsson, Math. Scand. 42 (1978), 289-305
R. Ya. Doktorskii, Soviet Math. Dokl. 44 (1992), 665-669
W. D. Evans, B. Opic, Canad. J. Math. 52 (2000), 920-960

W. D. Evans, B. Opic, L. Pick, J. Inequal. Appl. 7 (2002), 187-269.



Logarithmic interpolation methods

Put £(t) =1+ |logt|; for A = (ap, areo ) € R? write

£oo(t) if0<t<l,
o= (t) ifl<t<oo.

(h(2) = (o) (2) = {
For0<f<1land1<q< oo,

S dt\Y9
(Ao,A1)97q7A={a€A0+A1: HaHG,q,A:(ﬂ [t aéA(t)K(t,a)]qT) <oo}.

D. E. Edmunds, B. Opic, J. Funct. Anal. 266 (2014), 3265-3285.

If Ag = A; then
» (Ao, Al)1,g:k = (AOaAl)l,q,(ag,O) whenever ag < -1/ and
> (AO,A])O,q;J = (AOaAl)Oﬁq,(ag,fl) for any g € R.



Logarithmic interpolation methods
Put £(t) =1+ |logt|; for A = (ag, ares ) € R? write

£o(t) if0<t<l,
%= (t) if1<t< oo.

A (t) = e0e=)(¢) :{
For0<f#<1and 1<qg< oo,

oo oA th 1/q
(Aos A )g.qn = aeA0+A1:|\aH97q7A:(‘/O (6004 (1)K (t, a)] T) s

Since (Ao, A1)0,q,(a0,0e) = (A1,A0)1,q,(aw,a0). it is sufficient to study the
case where 6 = 1.



Logarithmic interpolation methods
Put £(t) =1+ |logt|; for A = (ag, ares ) € R? write

£o(t) if0<t<l,
%= (t) if1<t< oo.

PA(t) = £(002=) (1) :{

For0<f#<1and 1<qg< oo,
i PRGN q dt\"4
(Ao, A1)0,q.8 = a€A0+A1:HaH97q,A:(‘/O [t (1)K (t,a)] T) <oot.

Since (Ao, A1)0,q,(a0,0e) = (A1,A0)1,q,(aw,a0). it is sufficient to study the
case where 6 = 1.

Case  =1. W. D. Evans, B. Opic and L. Pick, J. Inequal. Appl. 7
(2002), 187-269.

1 0 if
(Ao, A1)1,q,4 = {0} unless {ao +1/q<0 if g <oo,

ap<0 if g =o0.

In these cases, (Ao, A1)1,q,4 is an interpolation space.



Interpolation of compact operators

D. E. Edmunds, B. Opic, J. Funct. Anal. 266 (2014)

Theorem. Let (R, 1) and (S, v) be finite measure spaces, let
l<pp<pr<oo,1<qgog<qg<oo,1<g<ooand a+1/g>0. Put
Yo = a+1/min(pg,q) and v; = @+ 1/ max(pg, q). If T is a linear
operator such that

T:Ly(R,pu) — Lg(S,v) is compact and
T:Ly(R,u) — Ly (S,v) is bounded,

then T : Ly q(log L)~ (R, ) — Lgy q(log L), (S,v) compactly.



F. Cobos, L. M. Fernandez-Cabrera, A. Martinez, Math. Nachr. 288
(2015), 167-175.

Let A® = Ao Ar””
Theorem Let A= (Ag, A1) and B = (By, B1) be Banach couples with
By < By. Suppose that T € L(A, B) is a linear operator such that

T :Ap — By is bounded and
T:A; — B; is compact.

Let 1 < g <ooand A = (o, xeo ) € R? such that

ag+1/g<0 if g<oo,
ap<0 if g =oo0.

then T : (A§,A{)1,q.0 — (B, BY)1,q,4 is also compact.



F. Cobos, L. M. Fernandez-Cabrera, A. Martinez, Math. Nachr. 288
(2015), 167-175.

Let A® = Ao Ar””
Theorem Let A= (Ag, A1) and B = (By, B1) be Banach couples with
By < By. Suppose that T € L(A, B) is a linear operator such that

T :Ap — By is bounded and

T:A; — B; is compact.

Let 1 < g <ooand A = (o, xeo ) € R? such that

ag+1/g<0 if g<oo,
ap<0 if g =oo0.

then T : (A§,A{)1,q.0 — (B, BY)1,q,4 is also compact.

They also showed that one cannot shift the compactness to the first
restriction.



Theorem. Let A= (Ao, A1), B = (B, Br) be Banach couples and let
T € L(A, B) be such that

T:A)— By is bounded and
T:A; — B; is compact.

Then for any A = (ap, o) € R? and 1 < g < oo such that ag+1/q <0 if
g < oo, or ag <0 if g =00, we have that the restriction
T : (Ao, A1)1,g.4 — (Bo, Bi)1,g,a is compact.



Theorem. Let A= (Ao, A1), B = (B, Br) be Banach couples and let
T € L(A, B) be such that

T:Ag— By is bounded and

T:A; — B; is compact.

Then for any A = (ap, o) € R? and 1 < g < oo such that ag+1/q <0 if
g < oo, or ag <0 if g =00, we have that the restriction
T : (Ao, A1)1,g.4 — (Bo, Bi)1,g,a is compact.

Since (Ao, A1)1,q,(a0,ae) = (A1,40)0,q,(aee,00)

Theorem. Let A= (Ag, A1), B =(By,B1) be Banach couples and let
T € L(A, B) such that

T:A)— By is compact and
T:A; — B; is bounded.

Then for any A = (ap, e ) € R? and 1 < g < oo such that e +1/g <0 if
g < 00, OF (oo <0 if g = 00, we have that the restriction
T : (Ao, A1)o0,q,6 — (Bo, B1)o,q,a is compact.



Corollary. Let (R, 1), (S,v) be a o-finite measure space. Take
l<pp<pi<oo, 1<qgp<gi<oo, 1<g<ooandA =(ag,ao) € R? with
Qoo +1/g<0<ag+1/q. Let T be a linear operator such that

T:Lp(R) — Lg(S) is compact and T : L, (R) — Lg, (S) is bounded.

Then
Tilpq(logl)y, 1 (R)—> Lgq(logl),, 1 (S)

min(pg,q) max(qg,q)

is also compact.



Corollary. Let (R, 1), (S,v) be a o-finite measure space. Take
l<pp<pi<oo, 1<qgp<gi<oo, 1<g<ooandA =(ag,ao) € R? with
Qoo +1/g<0<ag+1/q. Let T be a linear operator such that

T:Lp(R) — Lg(S) is compact and T : L, (R) — Lg, (S) is bounded.

Then

T: Lpo,q(IOg L)A+ min(ll70 ) (S)

is also compact.

(R) — Lqy,q(logL),, @
max(qp,q)

For the proof.
—~We use the compactness theorem,
—W. D. Evans, B. Opic, Canad. J. Math.(2000): if ry < r; and Q is o-finite,

L (108 L)t (@) (Lo(Q), L ()0 = L g(log L) s ().
If n<ryand Q is o-finite,
Lrq(log L)y s () = (L (Q), Lr (2))o,q.8 = Lryq(log L)z, (),

max

where A = (ae, ap).



In particular, if we shift the compactness to the second restriction, the
result reads as follows.

Corollary. Let (R, ), (S,v) be o-finite measure spaces. Take
1<pp<pi<oo, 1<qp<qgi<oo, 1<g<ooandA =(ag,ao)€R? with
ap+1/g<0<ae +1/q. Let T be a linear operator such that

T:Lp(R) — Lg(S) is bounded and T : L, (R) — Lg, (S) is compact.

Then

(R) _> LQ1 q(logL)A+ (5)

e

T: P1 q(lOg L)A+

mm(ul q)

is also compact.



- F. Cobos, A. Segurado. Limiting real interpolation methods for
arbitrary Banach couples. Studia Math. 213 (2012), 243-273.

- F. Cobos, A. Segurado. Description of logarithmic interpolation
spaces by means of the J-functional and applications. J. Funct.
Anal. 268 (2015), 2906-2945.
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