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Lecture 1: Bernoulli Free Boundaries

Let Ω be the domain below S in the (X,Y )-plane where

S := {(u(s), v(s)) : s ∈ R} is 2π-periodic,

(u, v) is injective and absolutely continuous,

u′(s)2 + v′(s)2 > 0 for almost all s,

s 7→ (u(s) − s, v(s)) is 2π–periodic,

S

Ω



Dirichlet Problem

Consider the problem of finding ψ with

ψ ∈ C(Ω) ∩ C2(Ω),

∆ψ = 0 in Ω,

ψ is 2π–periodic in X,

∇ψ(X,Y ) → (0, 1) as Y → −∞ uniformly in X,

ψ ≡ 0 on S.

By classical theory a solution always exists and, by the
Maximum Principle, ψ < 0 and ∇ψ is nowhere zero on Ω.



Bernoulli Free Boundary Problems

A Bernoulli free-boundary problem is one of determining those
curves S with the property that the solution of this Dirichlet
problem satisfies an additional inhomogeneous Neumann
condition

∂ψ

∂n
= h(Y ) almost everywhere on S

where h is given and n denotes the outward normal to Ω at
points of S.



As the outward normal derivative of ψ on S is non-negative, by
the maximum principle, h ≥ 0 on S is necessary for the
existence of solutions. Because formally the tangential
derivative of ψ is zero almost everywhere it is convenient to
reformulate the Neumann condition as

for every (X,Y ) ∈ S,

|∇ψ(X1, Y1)|
2 → λ(Y ) as (X1, Y1) → (X,Y ) in Ω

where λ = h2. We will consider only functions λ which are
continuous on R(v)where R(v) is the range of v, a compact
interval, and that λ is real-analytic on the open set of full
measure where it is non-zero. The real-analyticity hypothesis is
made for technical convenience and our results have analogues
for other classes of λ.
Since λ(Y ) is continuous on S, it follows that |∇ψ| is
continuous on Ω.



Special case: Stokes waves

I λ(Y ) = 1 − 2gY where g > 0 is the acceleration due to
gravity

I ψ is the stream function

I (ψY ,−ψX) is the steady velocity field

I the Dirichlet and Neumann boundary condition mean that
S is a streamline at which the pressure in the flow is a
constant

I a point on S where the velocity is zero is called a
stagnation point

Although λ is affine in the case of Stokes waves, there is nothing
special about the the theory of Stokes waves that distinguishes
it from the general theory.



Stagnation Points
(X0, Y0) ∈ S is a stagnation point if λ(Y0) = 0

Only at stagnation points can S not be smooth, and there is a
corner at each stagnation point.

X = −π X = π



Notation

I Lp
2π, p ≥ 1, denotes the space of 2π-periodic locally

pth-power summable real-valued functions.

I For p ≥ 1, let W 1,p
2π be the space of functions w ∈ Lp

2π with
weak first derivatives w′ ∈ Lp

2π

Conjugation Operator or Hilbert Transform Cu is defined
almost everywhere for any 2π-periodic locally integrable
functions u by the Cauchy Principal Value integral

Cu(x) =
1

2π

∫ π

−π
u(y) cot( 1

2
(x− y))dy.

Alternatively,

C sin kx = − cos kx, C cos kx = sin kx, k ∈ N, C1 = 0,

defines C for square-integrable functions.



I C is a bounded linear operator on Lp
2π, 1 < p <∞

but not in L1
2π or L∞

2π.

I H1,1
R

be the real Hardy space of functions w ∈W 1,1
2π with w′

in the usual Hardy space H1
R

:= {u ∈ L1
2π : Cu ∈ L1

2π}.

I H1,1
R

is a Banach algebra and λ(u) ∈ H1,1
R

when u ∈ H1,1
R

, if
λ is Lipschitz continuous.

I Let H∞
R

denote the real Hardy spaces of 2π-periodic

functions u such that u, Cu ∈ L∞
2π and let H1,∞

R
be the

space of absolutely continuous functions with w′ ∈ H∞
R

.

I The k-times continuously differentiable functions on an
interval I are denoted by Ck(I).

I Hölder continuous functions are denoted by Ck,α(I).



Complex Hardy Spaces.

Let D ⊂ C denote the open unit disc. For a holomorphic
function f : D → C, let fr(t) = f(reit) for t ∈ R and r ∈ (0, 1).

The Nevanlinna class N consists of complex analytic functions
f : D → C such that

supr∈(0,1)

∫ 2π

0
log+ |f(reit)|dt <∞.

If f ∈ N , limr↗1 f(reit), denoted by f∗(t), t ∈ R, exists almost
everywhere and log |f∗| ∈ L1

2π if f 6≡ 0.

A function f ∈ N belongs to the Nevanlinna–Smirnov class N+

if

lim
r→1

∫ 2π

0
log+ |f(reit)|dt =

∫ 2π

0
log+ |f∗(t)|dt, log+ = max{0, log}

(1)



I It is well known that, for any p ∈ (0,∞],

||f ||p := lim
r→1

‖fr‖Lp

2π

= supr∈(0,1) ‖fr‖Lp

2π

is well defined

I The Hardy class Hp
C

is the set of f with ||f ||p <∞.

I Note that Hp
C
⊂ N+ and, for f ∈ Hp

C
, f∗ ∈ Lp

2π,
‖f∗‖Lp

2π

= ||f ||p and log |f∗| ∈ L1
2π if f 6≡ 0.

I By a theorem of Smirnov, F ∈ N+ and F ∗ ∈ Lp
2π together

imply that F ∈ Hp
C
.

I Moreover u ∈ H1
R

if and only if u+ iCu = U∗ for some
U ∈ H1

C
.



Equation ( A)

Theorem

Let u, v, ψ be a solution of the Bernoulli problem and let ϕ be a
harmonic conjugate of −ψ. Then ϕ+ iψ is an injective
conformal mapping of Ω onto the open lower half-plane which
has an extension as a homeomorphism from Ω onto the closed
lower half-plane. Let Z be its inverse. Then t 7→ Z(iy − t) is
an absolutely continuous parametrization of the streamline
{(X,Y ) : ψ(X,Y ) = y} for all y ≤ 0. Let

w(t) = Im Z(−t), t ∈ R.

Then w ∈ H1,1
R

satisfies

λ(w){w′2 + (1 + Cw′)2} = 1. (A)

Moreover 1/W ∈ N+ where W ∈ H1
C

is such that
W ∗ = w′ + i(1 + Cw′).



Equation ( B)
The extent to which this equation is equivalent to

λ(w)
(
1 + Cw′

)
+ C

(
λ(w)w′

)
= 1, (B)

is less obvious.

Equation (B) is the Euler-Lagrange equation of the functional

J (w) =

∫ π

−π

{
Λ(w)

(
1 + Cw′

)
− w

}
dt, w ∈ H1,1

R
,

which has a natural physical interpretation, when Λ is a
primitive of λ

Theorem

For w ∈ H1,1
R

let W ∈ H1
C

be such that W ∗ = w′ + i(1 + Cw′).
Then the following are equivalent.

(i) w satisfies (B) and λ(w) ≥ 0;

(ii) w satisfies (A) and 1/W ∈ N+ .



The Key
Riemann-Hilbert Theory

Euler-Lagrange equation (B) λ(w)
(
1 + Cw′

)
+ C

(
λ(w)w′

)
= 1

can be written in complex form as

λ(w)w′ + i(−1 + C(λ(w)w′)) = λ(w)w′ − iλ(w)(1 + Cw′)

In other words, if

V ∗ = λ(w)w′ + i(−1 + C(λ(w)w′)) and W ∗ = w′ + i(1 + Cw′)

then
V ∗ = λ(w)W

∗

Therefore V ∗W ∗ = λ(w)|W ∗|2. Hence, since VW is the
Poisson’s integral of its boundary data, and the Poisson kernel
is smooth, then VW is a real-valued holomorphic function.
Hence, by Cauchy-Riemann equations it is a constant. Hence

λ(w){w′2 + (1 + Cw′)2} = λ(w)|W ∗|2 = const

which gives (A)



Caveat

Let V = W : D → C be the holomorphic functions defined by

V (z) = W (z) =
1 − iz

z − i
=

(
1 − iz

z − i

)(
z + i

z + i

)

=
z + z + i(1 − |z|2)

|z − i|2

Thus V ∗ = V
∗

but VW is not a constant. The key result is

Theorem

Suppose V, W ∈ H1
C

and V ∗ = aW
∗

where a is a bounded
measurable function on ∂D. Then the following are equivalent.

I a ≥ 0

I a|W ∗|2 is integrable

I a|W ∗|2 ≡ const



More about (B)

λ(w)
(
1 + Cw′

)
+ C

(
λ(w)w′

)
= 1

is the Euler-Lagrange equation of

J (w) =

∫ π

−π

{
Λ(w)

(
1 + Cw′

)
− w

}
dt, w ∈ H1,1

R
.

Also it can be rewritten

2λ(w)Cw′ = 1 − λ(w) + λ(w)Cw′ − C(λ(w)w′)

= 1 − λ(w) + F(w)

Note that w 7→ Cw′ is first order and self-adjoint, with Fourier
multipliers |k|, k ∈ Z.

Moreover F is a smoothing operator, in fact:



Theorem

Suppose that Λ is convex and λ = Λ′. Then F(u)(x) ≥ 0 almost
everywhere. (Moreover, F is smoothing)

Proof. Let

G(u)(x, y) = Λ(u(y)) − Λ(u(x)) − λ(u(x))(u(y) − u(x))

G ≥ 0 because Λ is convex. Therefore,

λ(u(x))Cu′(x)−C(λ(u)u′)(x) =
1

2π

∫ π

−π

(λ(u(x)) − λ(u(y)))u′(y)

tan((x− y)/2)
dy

=
−1

2π

∫ π

−π

(∂/∂y)G(u)(x, y)

tan((x− y)/2)
dy =

1

4π

∫ π

−π

G(u)(x, y)

sin2((x− y)/2)
dy ≥ 0.



Smoothing

Suppose λ is smooth. Then

I u ∈W 1,2
2π ⇒ F(u) ∈ L∞

2π and sequentially continuous from
the weak W 1,22π-topology, into Lp

2π, 1 ≤ p <∞, with the
strong Lp-topology.

I If u ∈W 1,p
2π for 2 < p <∞. Then F(u) ∈ C1− 2

p .

I u ∈ C1α, α ∈ (0, 1) ⇒ F(u) ∈ C1,δ, 0 < δ < α.

So if λ 6= 0, a bootstrap gives u ∈ C∞. Then an independent
argument gives that u is real-analytic because λ is real-analytic.



Equation (B) and Bernoulli free boundaries

Theorem

We have observed that every Bernoulli free boundary gives a
solution w of

λ(w){w′2 + (1 + Cw′)2} = 1 ((A))

In addition it follows that

w satisfies (B);
λ(w) ≥ 0;

t 7→ (−(t+ Cw(t)), w(t)) injective on R.



 (C)

Conversely, suppose that w ∈ H1,1
R

satisfies (C). Let

S = {(−(t+ Cw(t)), w(t)) : t ∈ R}

and let Ω be the open domain below S. There exists a conformal
mapping ω of Ω onto C

− such that S gives a solution of a
Bernoulli free boundary problem.



Correspondence

There is a one-to-one correspondence between solutions of
Bernoulli free boundary problems with |∇ψ| bounded and
solutions w ∈ H1,1

R
of (C)

The question is: can we say when a solution of (B) satisfies (C)

t0 is called a stagnation point when λ(w(t0)) = 0, and solutions
with stagnation points are called singular. The set N (w) of
stagnation points is closed.

If

λ ≥ 0, log λ is non-constant, concave, and

λ′ ≤ 0 where λ 6= 0 on R(w),

a solution of (B) defines a non-self-intersecting curve S and S
is a Bernoulli free boundary provided w has at most countably
many stagnation points.



Duality

Recall equation (B) in the form

λ(w)w′ + i(−1 + C(λ(w)w′)) = λ(w)
(
w′ − i(1 + Cw′)

)

which can be re-written

−(w′ + i(1 + Cw′)) =
1

λ(w)

(
− λ(w)w′ − i(1 + C(−λ(w)w′)

)

=
1

λ(w)

(
v′ − i(1 + C(v′)

)

where v = −λ(w). Suppose that λ(w) ≥ 0 so that (A) holds
also.

Let w̃(t) = −
∫ t
0 λ(w(x))w′(x)dx and λ(w(t))λ̃(w̃(t)) ≡ 1

Then w̃(t) = −
∫ t
0 λ(w(x))w′(x)dx is a solution of (A) and (B)

with λ̃ instead of λ



Dual Stokes Waves

The Stokes wave free boundary conditions are that the
harmonic stream function satisfy

ψ ≡ 0 and |∇ψ|2 + 2gy ≡ 1 on S

The dual problem corresponds to to a free-boundary problem
for the “dual stream function” ψ̃:

ψ̃ ≡ 0, (4gy + 1)|∇ψ̃|4 ≡ 1

at the “dual” free boundary S̃

These two apparently distinct Bernoulli problems are equivalent



Self-Duality
An example

It is natural to ask if there are λ s such that λ̃ ≡ λ.
Consider the case λ ∈ C(R), λ(v) > 0, ∀v ∈ R.

Theorem

(i) Suppose f : [0,+∞) → [0,+∞) is continuously
differentiable, f(0) = 0, f ′ > 0, and f ′(0) = 1. Let

Λ(w) =

{
f(w), if w ≥ 0,

−f−1(−w), if w < 0.
(2)

Then λ = Λ′ is self-dual.

(ii) Conversely, if λ is self-dual, then

Λ(w) :=

∫ w

0
λ(v)dv, w ∈ R

has the form (2).



Regularity of Solutions of (B)

Without hypotheses on sign of λ(w) we observe how λ(w) 6= 0
relates to the regularity of solutions w of (B).

Theorem

When w ∈ H1,1
R

is a solution of (B)

I log |λ(w)| ∈ L1
2π

I λ(w) > 0 on a set of positive measure

I w is real-analytic on the open set of full measure λ(w) 6= 0

As a corollary, if S, ψ is a Bernoulli free boundary, then

I S and ψ are real-analytic in a neighbourhood of any point
of S that is not a stagnation point,

I ∇ψ is continuous in the closure of Ω



How zeros of λ affects the smoothness of w

Let w ∈ H1,1
R

be a solution of (B). Suppose that % > 0 is such
that for all x0 ∈ R(w) with λ(x0) = 0,

|λ(x)| ≤ constant |x− x0|
% for all x ∈ R(w).

Let

p(%) =
%+ 2

%
and r(%) =

%+ 2

%+ 1
.

(a) The following are equivalent:

(i) w ∈W
1,p(%)
2π (w ∈W 1,3

2π if λ is Lipschitz);
(ii) w is real-analytic on R;
(iii) λ(w) > 0 on R.



(b) The function w is real-analytic if

λ(w) ≥ 0 and − (1 + Cw′) + iw′ =
∣∣ − (1 + Cw′) + iw′

∣∣ eiϑ,
where ϑ = ϑ1 + ϑ2 with ϑ1 continuous and ‖ϑ2‖∞ < π/(2p(%)).

(‖ϑ2‖∞ < π/6 if λ is Lipschitz)

(c) If w ∈W
1,r(%)
2π then λ(w) ≥ 0 (w ∈W

1,3/2
2π if λ is Lipschitz)

(d) If % = 0, which amounts to no additional hypothesis since λ
is continuous and R(w) is compact, then λ(w) ≥ 0 if w ∈W 1,2

2π .

It is not known whether there are solutions of (B) which do not
satisfy (A) for which λ(w) changes sign.

There are however solutions w of (A) and (B) for which λ(w)
has zeros - the famous Stokes waves



Dimension of the Set of Stagnation Points
It follows from Theorem 7 that N (w) has measure 0. The
following result implies that its dimension is not greater than
2/3 if λ is Lipschitz continuous. Note that the lower Minkowski
dimension dimM , bounds the Hausdorff dimension from above.

Theorem

Let w ∈ H1,1
R

be a solution of (A) and (B) where λ is such that

c|x− x0|
% ≤ λ(x) ≤ C|x− x0|

%, c, C, % > 0,

for all x in a neighbourhood of x0 in R(w) when λ(x0) = 0. Let
q(%) = (%+ 2)/2. Then

dimM N (w) ≤ 1/q(%).

If w ∈W 1,p
2π , p > 1, then

dimM N (w) ≤ 1−(p/p(%)), 1 < p < p(%), N (w) = ∅ when p ≥ p(%).



Jordan Curves
We would like to use the functional J and its Euler-Lagrange
equation (B), without further qualification to study Bernoulli
free-boundary problems. Suppose

λ ≥ 0, log λ is non-constant, concave, and

λ′ ≤ 0 where λ 6= 0 on R(w)

and w, a solution of (B), has at most countably many
stagnation points. Let

ϑ = C
(
log

√
λ(w)

)

Theorem

If w ∈ H1,1
R

satisfies (A) and (B), then

√
λ(w)w′ = sinϑ and

√
λ(w)(1 + Cw′) = cos ϑ (3)

and ϑ(t) ∈
(
− π/2, π/2

)
. Hence 1 + Cw′ > 0, almost

everywhere. For smooth functions 1 + Cw′ > 0 everywhere.



Important Open Question

The hypotheses of this theorem on λ are valid when
λ(w) = 1 − 2gw for any g > 0.

Unfortunately even in that case it is not known whether the
requirement that N (w) be denumerable is necessary.

In fact no examples are known in which N (w) ∩ [0, 2π) contains
more than one point when w ∈ H1,1

R
satisfies (A) and (B).

Can a solution w of (A) and (B) have
uncountably many stagnation points?


