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Lecture 1: Bernoulli Free Boundaries

Let © be the domain below S in the (X, Y)-plane where

S :={(u(s),v(s)) : s € R} is 2m-periodic,
(u,v) is injective and absolutely continuous,
u'(5)? +0'(s)? > 0 for almost all s,

s+ (u(s) — s,v(s)) is 2m—periodic

Q




Dirichlet Problem

Consider the problem of finding ¢ with

P e CQ) NC* (),

Ay =0 in €,

1 is 2m—periodic in X,

ViY(X,Y) — (0,1) as Y — —oo uniformly in X
¥ =0onS.

By classical theory a solution always exists and, by the
Maximum Principle, ) < 0 and V¢ is nowhere zero on (2.



Bernoulli Free Boundary Problems

A Bernoulli free-boundary problem is one of determining those
curves S with the property that the solution of this Dirichlet
problem satisfies an additional inhomogeneous Neumann
condition

oy _

5, = h(Y') almost everywhere on &
n

where h is given and n denotes the outward normal to ) at
points of S.



As the outward normal derivative of ¥ on S is non-negative, by
the maximum principle, h > 0 on § is necessary for the
existence of solutions. Because formally the tangential
derivative of ¢ is zero almost everywhere it is convenient to
reformulate the Neumann condition as

for every (X,Y) € S,
V(X1 Y1) 2 = AY) as (X1,Y1) — (X,Y) in Q

where A\ = h?. We will consider only functions A which are
continuous on R(v)where R(v) is the range of v, a compact
interval, and that X is real-analytic on the open set of full
measure where it is non-zero. The real-analyticity hypothesis is
made for technical convenience and our results have analogues
for other classes of A.

Since A(Y') is continuous on S, it follows that [V)| is
continuous on €.



Special case: Stokes waves

» A(Y) =1—2gY where g > 0 is the acceleration due to
gravity
» 1 is the stream function

> (Yy,—1x) is the steady velocity field

the Dirichlet and Neumann boundary condition mean that
S is a streamline at which the pressure in the flow is a

v

constant

v

a point on § where the velocity is zero is called a
stagnation point

Although A is affine in the case of Stokes waves, there is nothing
special about the the theory of Stokes waves that distinguishes
it from the general theory.



Stagnation Points
(Xo,Yp) € S is a stagnation point if A(Yp) =0

Only at stagnation points can S not be smooth, and there is a
corner at each stagnation point.




Notation

» L5 . p > 1, denotes the space of 2m-periodic locally
pth-power summable real-valued functions.

» For p > 1, let W217’Tp be the space of functions w € L with
weak first derivatives w’ € Lb_

Conjugation Operator or Hilbert Transform Cu is defined
almost everywhere for any 2m-periodic locally integrable
functions u by the Cauchy Principal Value integral

Cule) = 5= [ ulw)cot(3(x -~ )iy

Alternatively,
Csinkx = —coskx, Ccoskx =sinkzx, keN, (Cl1=0,

defines C for square-integrable functions.



» C is a bounded linear operator on L) , 1 < p < 0o
but not in L_ or L.

> H%’l be the real Hardy space of functions w € V[/'Ql;r1 with w’
in the usual Hardy space Hy, = {u € L} : Cue L }.

> H%’l is a Banach algebra and A(u) € H]ﬁ’l when u € H%’l, if
A is Lipschitz continuous.

» Let ‘Hy® denote the real Hardy spaces of 2m-periodic

functions u such that v, Cu € LSS and let 'H]EOO be the
space of absolutely continuous functions with v’ € Hg.

» The k-times continuously differentiable functions on an
interval I are denoted by C¥(I).

» Holder continuous functions are denoted by C*<(T).



Complex Hardy Spaces.
Let D C C denote the open unit disc. For a holomorphic
function f: D — C, let f.(t) = f(re®) for t € R and r € (0,1).

The Nevanlinna class N consists of complex analytic functions
f: D — C such that

2
SUPre(O,l)/O log™t |f(re™)|dt < occ.

If f€N,lim, ~ f(re'), denoted by f*(t), t € R, exists almost
everywhere and log |f*| € L _if f # 0.

A function f € N belongs to the Nevanlinna—Smirnov class N
if

2 ) 2
lim log™t |f(re™)|dt = / logt |f*(t)|dt, log™ = max{0,log}
0

r—1 Jg
(1)



It is well known that, for any p € (0, o],
fllp == }}_}Tﬁ ||frHng = SUPreg(0,1) HfrHng is well defined

» The Hardy class Hg. is the set of f with ||f|], < co.
» Note that Hf. C N and, for f € HE, f* e L},
172z, = 1l and log |*] € Lb, if £ 2 0.

By a theorem of Smirnov, F € N* and F* € LY together
imply that F € HE.

Moreover u € H}, if and only if u + iCu = U* for some
U € HE.



Equation ( A)
Theorem

Let u, v, ¥ be a solution of the Bernoulli problem and let ¢ be a
harmonic conjugate of —1p. Then ¢ + 11 is an injective
conformal mapping of Q0 onto the open lower half-plane which
has an extension as a homeomorphism from Q onto the closed
lower half-plane. Let Z be its inverse. Then t — Z(iy —t) is
an absolutely continuous parametrization of the streamline
{(X,Y):9(X,Y) =y} forally <0. Let

w(t) =Im Z(—t), teR.

Then w € H%’l satisfies

Mw){w? + (14 Cw')?} = 1. (A)

Moreover 1/W € Nt where W € H is such that
W* =w' +i(1 + Cuw').



Equation ( B)

The extent to which this equation is equivalent to

Mw)(1+Cw') + C(AMw)w') =1, (B)

is less obvious.

Equation (B) is the Euler-Lagrange equation of the functional

J(w) = i {Aw)(1+Cuw') —w}dt, we H%’l,

which has a natural physical interpretation, when A is a
primitive of A

Theorem

For w € Hy' let W € HE be such that W* = w' 4 i(1 4 Cu').
Then the following are equivalent.

(i) w satisfies (B) and A(w) > 0;

(ii) w satisfies (A) and 1/W € N* .



The Key

Riemann-Hilbert Theory
Euler-Lagrange equation (B) A(w)(1+Cuw') +C(A(w)w') =1
can be written in complex form as
AMw)w' +i(—1 4+ CA(w)w')) = Mw)w' — iA(w)(1 + Cu')
In other words, if
V= AMw)w' +i(—1+ C(A(w)w')) and W* = w’ +i(1 + Cw')

then
*

V= \Nw)W

Therefore V*W* = \(w)|W*|2. Hence, since VW is the
Poisson’s integral of its boundary data, and the Poisson kernel
is smooth, then VW is a real-valued holomorphic function.
Hence, by Cauchy-Riemann equations it is a constant. Hence

Aw){w? + (14 Cw')?} = Mw)|W*|* = const
which gives (A)



Caveat
Let V=W : D — C be the holomorphic functions defined by
1 1 _ .
o= (5 ()
zZ—1 zZ—1 zZ4+1
CzZ+z+i(l—z?)
B |z —if?

Thus V* =V~ but VIV is not a constant. The key result is
Theorem

Suppose V, W € H}C and V* = aW" where a is a bounded
measurable function on 0D. Then the following are equivalent.

» a>0
> a|W*|? is integrable

> a|W*|? = const



More about (B)

AMw) (14 Cw') + C(AMw)w') =1

is the Euler-Lagrange equation of

J(w) = i {Aw)(1+Cu') —w}dt, we H%’l.

-7

Also it can be rewritten

2A\(w)Cw’ —1*A(w)+ ( ) — C(A(w)u')

Note that w +— Cw’ is first order and self-adjoint, with Fourier
multipliers |k|, k € Z.

Moreover F is a smoothing operator, in fact:



Theorem

Suppose that A is convex and A = A'. Then F(u)(x) > 0 almost
everywhere. (Moreover, F is smoothing)

Proof. Let

Gu)(z,y) = Au(y)) — Au(@)) — AMu(@))(u(y) - u(z))

G > 0 because A is convex. Therefore,

Au(2))Cu! (z) ~C(Au)')(z) = = /” (Au@) = Mu@)' @),

" or tan((x — y)/2)
L[ @G, L G
"o L e YT e

O



Smoothing

Suppose A is smooth. Then

> u € VV217}2 = F(u) € LSS and sequentially continuous from
the weak W122r-topology, into L5, 1 < p < oo, with the
strong L,-topology.

> Ifue W217’Tp for 2 < p < co. Then F(u) € o5

»ucCl1% ac(0,1)= Flu) eCY, 0<6<a.

So if A # 0, a bootstrap gives u € C°°. Then an independent
argument gives that u is real-analytic because X is real-analytic.



Equation (B) and Bernoulli free boundaries
Theorem

We have observed that every Bernoulli free boundary gives a
solution w of

Aw){w? + (1 +Cuw')?} =1 ((A))
In addition it follows that

w satisfies (B);
A(w) > 0; (©)
t— (—(t+Cw(t)),w(t)) injective on R.

Conversely, suppose that w € Hﬁg’l satisfies (C). Let
S={(—(t+Cw()),w)): teR}

and let § be the open domain below S. There exists a conformal
mapping w of  onto C~ such that S gives a solution of a
Bernoulli free boundary problem.



Correspondence

There is a one-to-one correspondence between solutions of
Bernoulli free boundary problems with |V| bounded and
solutions w € H%’l of (C)

The question is: can we say when a solution of (B) satisfies (C)

to is called a stagnation point when A(w(tp)) = 0, and solutions
with stagnation points are called singular. The set N (w) of
stagnation points is closed.

If

A >0, logA is non-constant, concave, and
N < 0 where A # 0 on R(w),

a solution of (B) defines a non-self-intersecting curve S and S
is a Bernoulli free boundary provided w has at most countably
many stagnation points.



Duality

Recall equation (B) in the form
Mw)w' +i(—=1+ C(AN(w)w")) = Mw) (w' —i(1+ Cu'))

which can be re-written

(' +i(1 +Cu')) = ﬁ (= Alwy! i1 +C(-Mw)u))
1

= o) (U' —i(1+ C(v'))

where v = —A(w). Suppose that A(w) > 0 so that (A) holds

also.
Let @(t) = — [5 A( )dm and A(w(t))X(@(t)) = 1
Then w(t) = — fo (z)dx is a solution of (A) and (B)

with A 1nstead of A



Dual Stokes Waves

The Stokes wave free boundary conditions are that the
harmonic stream function satisfy

Yp=0and [Vy|?+29y=1on S

The dual problem corresponds to to a free-boundary problem
for the “dual stream function” ¢:

v=0, (dgy+1)|Vy)i=1

at the “dual” free boundary S

These two apparently distinct Bernoulli problems are equivalent



Self-Duality

An example

It is natural to ask if there are As such that A = .

Consider the case A € C(R), A(v) >0, Vv € R.

Theorem

(i) Suppose f :[0,4+00) — [0,4+00) is continuously
differentiable, f(0) =0, f' >0, and f'(0) = 1. Let

_ fw), if w >0,
Alw) = { —fH(~w), ifw<O.

Then A = N is self-dual.
(ii) Conversely, if X is self-dual, then

has the form (2).



Regularity of Solutions of (B)

Without hypotheses on sign of A(w) we observe how A(w) # 0
relates to the regularity of solutions w of (B).
Theorem
When w € H]ﬁ’l is a solution of (B)
> log [\(w)] € Ly,
> A(w) > 0 on a set of positive measure

> w is real-analytic on the open set of full measure A\(w) # 0
As a corollary, if S, ¥ is a Bernoulli free boundary, then

> S and ¥ are real-analytic in a neighbourhood of any point
of § that is not a stagnation point,

> V) is continuous in the closure of €2



How zeros of )\ affects the smoothness of w

Let w € H%’l be a solution of (B). Suppose that ¢ > 0 is such
that for all z9 € R(w) with \(xzg) =0,

|A(z)] < constant |z — z¢|? for all z € R(w).

Let 5 5
o+ 0+

= and r(p) = ——.

(o) 0 (0) o+ 1

a) The following are equivalent:

i) wis real analytic on R;

(
(i) we W, Al (we VV27’r if A is Lipschitz);
(
(iii) A(w) > 0 on R.



(b) The function w is real-analytic if

Mw) >0 and — (14 Cw') +iw' = | — (1 +Cuw') + i/ e,
where ¥ = ¥; + 2 with 91 continuous and |92/ < 7/(2p(0)).
(|[92]loc < 7/6 if A is Lipschitz)
(¢) If w € Wo"? then A(w) > 0 (w € Wy*/? if X is Lipschitz)

(d) If o = 0, which amounts to no additional hypothesis since A
is continuous and R(w) is compact, then A(w) > 0 if w € W217’r2.
It is not known whether there are solutions of (B) which do not

satisfy (A) for which A(w) changes sign.

There are however solutions w of (A) and (B) for which \(w)
has zeros - the famous Stokes waves



Dimension of the Set of Stagnation Points

It follows from Theorem 7 that A(w) has measure 0. The
following result implies that its dimension is not greater than
2/3 if X is Lipschitz continuous. Note that the lower Minkowski
dimension dimj;, bounds the Hausdorff dimension from above.

Theorem

Let w € H]%{’l be a solution of (A) and (B) where X is such that
cle —xol|® < ANz) < Clx — x0l®, ¢, C, 0> 0,

for all x in a neighbourhood of xy in R(w) when A(xg) = 0. Let
q(0) = (0 +2)/2. Then

dimp N (w) < 1/q(0)-
If w e W217’Tp, p>1, then

dimp N(w) < 1—=(p/p(0)), 1<p<p(e), N(w) =0 when p > p(o).



Jordan Curves

We would like to use the functional 7 and its Euler-Lagrange
equation (B), without further qualification to study Bernoulli
free-boundary problems. Suppose

A >0, logA is non-constant, concave, and
X' <0 where X # 0 on R(w)

and w, a solution of (B), has at most countably many
stagnation points. Let

¥ = C(log \/A(w))
Theorem
If we ’H]%{’l satisfies (A) and (B), then
AMw)w =sind and /AN(w)(1+ Cw') = cosV (3)

and ¥(t) € (—w/2,7/2). Hence 1+ Cw' > 0, almost
everywhere. For smooth functions 1+ Cw' > 0 everywhere.



Important Open Question

The hypotheses of this theorem on A are valid when
AMw) =1 — 29w for any g > 0.

Unfortunately even in that case it is not known whether the
requirement that A'(w) be denumerable is necessary.

In fact no examples are known in which N (w) N[0, 27) contains
more than one point when w € Hﬁg’l satisfies (A) and (B).

Can a solution w of (A) and (B) have
uncountably many stagnation points?



