#### Bernoulli Free-boundary Problems

John Toland

Linköping Lectures 10 – 14 August 2009

#### Collaborators the Real Mathematicians

- Boris Buffoni (Lausanne)
- ▶ Norman Dancer (Sydney)
- Pavel Plotniknov (RaS Novosibirsk)
- ▶ Eric Séré (Paris Dauphine)
- ▶ Eugene Shargorodsky (Kings College London)
- ▶ Eugen Varvaruca (Imperial College London)

#### Lecture 1: Bernoulli Free Boundaries

Let  $\Omega$  be the domain below S in the (X, Y)-plane where



### Dirichlet Problem

Consider the problem of finding  $\psi$  with

$$\begin{split} &\psi\in C(\overline{\Omega})\cap C^2(\Omega),\\ &\Delta\psi=0 \text{ in }\Omega,\\ &\psi \text{ is }2\pi\text{-periodic in }X,\\ &\nabla\psi(X,Y)\to(0,1) \text{ as }Y\to-\infty \ \text{ uniformly in }X,\\ &\psi\equiv 0 \text{ on }\mathcal{S}. \end{split}$$

By classical theory a solution always exists and, by the Maximum Principle,  $\psi < 0$  and  $\nabla \psi$  is nowhere zero on  $\Omega$ .

## Bernoulli Free Boundary Problems

A Bernoulli free-boundary problem is one of determining those curves S with the property that the solution of this Dirichlet problem satisfies an additional inhomogeneous Neumann condition

$$\frac{\partial \psi}{\partial n} = h(Y)$$
 almost everywhere on  ${\mathcal S}$ 

where h is given and n denotes the outward normal to  $\Omega$  at points of S.

As the outward normal derivative of  $\psi$  on S is non-negative, by the maximum principle,  $h \ge 0$  on S is necessary for the existence of solutions. Because formally the tangential derivative of  $\psi$  is zero almost everywhere it is convenient to reformulate the Neumann condition as

for every 
$$(X, Y) \in \mathcal{S}$$
,  
 $|\nabla \psi(X_1, Y_1)|^2 \to \lambda(Y)$  as  $(X_1, Y_1) \to (X, Y)$  in  $\Omega$ 

where  $\lambda = h^2$ . We will consider only functions  $\lambda$  which are continuous on  $\mathcal{R}(v)$  where  $\mathcal{R}(v)$  is the range of v, a compact interval, and that  $\lambda$  is real-analytic on the open set of full measure where it is non-zero. The real-analyticity hypothesis is made for technical convenience and our results have analogues for other classes of  $\lambda$ .

Since  $\lambda(Y)$  is continuous on  $\mathcal{S}$ , it follows that  $|\nabla \psi|$  is continuous on  $\overline{\Omega}$ .

### Special case: Stokes waves

- ►  $\lambda(Y) = 1 2gY$  where g > 0 is the acceleration due to gravity
- $\psi$  is the stream function
- $(\psi_Y, -\psi_X)$  is the steady velocity field
- ► the Dirichlet and Neumann boundary condition mean that S is a streamline at which the pressure in the flow is a constant
- ▶ a point on S where the velocity is zero is called a stagnation point

Although  $\lambda$  is affine in the case of Stokes waves, there is nothing special about the the theory of Stokes waves that distinguishes it from the general theory.

Stagnation Points  $(X_0, Y_0) \in \mathcal{S}$  is a stagnation point if  $\lambda(Y_0) = 0$ 

Only at stagnation points can S not be smooth, and there is a corner at each stagnation point.



### Notation

- ►  $L_{2\pi}^p$ ,  $p \ge 1$ , denotes the space of  $2\pi$ -periodic locally  $p^{th}$ -power summable real-valued functions.
- ► For  $p \ge 1$ , let  $W_{2\pi}^{1,p}$  be the space of functions  $w \in L_{2\pi}^p$  with weak first derivatives  $w' \in L_{2\pi}^p$

Conjugation Operator or Hilbert Transform Cu is defined almost everywhere for any  $2\pi$ -periodic locally integrable functions u by the Cauchy Principal Value integral

$$Cu(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(y) \cot(\frac{1}{2}(x-y)) dy.$$

Alternatively,

$$C \sin kx = -\cos kx, \ C \cos kx = \sin kx, \ k \in \mathbb{N}, \ C 1 = 0,$$

defines  $\mathcal{C}$  for square-integrable functions.

- ► C is a bounded linear operator on  $L_{2\pi}^p$ , 1 $but not in <math>L_{2\pi}^1$  or  $L_{2\pi}^\infty$ .
- ►  $\mathcal{H}^{1,1}_{\mathbb{R}}$  be the real *Hardy space* of functions  $w \in W^{1,1}_{2\pi}$  with w' in the usual *Hardy space*  $\mathcal{H}^{1}_{\mathbb{R}} := \{u \in L^{1}_{2\pi} : Cu \in L^{1}_{2\pi}\}.$
- ▶  $\mathcal{H}^{1,1}_{\mathbb{R}}$  is a Banach algebra and  $\lambda(u) \in \mathcal{H}^{1,1}_{\mathbb{R}}$  when  $u \in \mathcal{H}^{1,1}_{\mathbb{R}}$ , if  $\lambda$  is Lipschitz continuous.
- ► Let  $\mathcal{H}_{\mathbb{R}}^{\infty}$  denote the real Hardy spaces of  $2\pi$ -periodic functions u such that u,  $\mathcal{C}u \in L_{2\pi}^{\infty}$  and let  $\mathcal{H}_{\mathbb{R}}^{1,\infty}$  be the space of absolutely continuous functions with  $w' \in \mathcal{H}_{\mathbb{R}}^{\infty}$ .
- The k-times continuously differentiable functions on an interval I are denoted by  $C^k(I)$ .
- ► Hölder continuous functions are denoted by  $C^{k,\alpha}(I)$ .

### Complex Hardy Spaces.

Let  $D \subset \mathbb{C}$  denote the open unit disc. For a holomorphic function  $f: D \to \mathbb{C}$ , let  $f_r(t) = f(re^{it})$  for  $t \in \mathbb{R}$  and  $r \in (0, 1)$ .

The Nevanlinna class N consists of complex analytic functions  $f:D\to \mathbb{C}$  such that

$$\sup_{r \in (0,1)} \int_0^{2\pi} \log^+ |f(re^{it})| dt < \infty.$$

If  $f \in N$ ,  $\lim_{r \nearrow 1} f(re^{it})$ , denoted by  $f^*(t)$ ,  $t \in \mathbb{R}$ , exists almost everywhere and  $\log |f^*| \in L^1_{2\pi}$  if  $f \neq 0$ .

A function  $f \in N$  belongs to the Nevanlinna–Smirnov class  $N^+$  if

$$\lim_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{it})| dt = \int_0^{2\pi} \log^+ |f^*(t)| dt, \quad \log^+ = \max\{0, \log\}$$
(1)

• It is well known that, for any  $p \in (0, \infty]$ ,

$$||f||_p := \lim_{r \to 1} ||f_r||_{L^p_{2\pi}} = \sup_{r \in (0,1)} ||f_r||_{L^p_{2\pi}}$$
 is well defined

- ▶ The Hardy class  $\mathcal{H}^p_{\mathbb{C}}$  is the set of f with  $||f||_p < \infty$ .
- ▶ Note that  $\mathcal{H}^p_{\mathbb{C}} \subset N^+$  and, for  $f \in \mathcal{H}^p_{\mathbb{C}}$ ,  $f^* \in L^p_{2\pi}$ ,  $\|f^*\|_{L^p_{2\pi}} = \|f\|_p$  and  $\log |f^*| \in L^1_{2\pi}$  if  $f \neq 0$ .
- ▶ By a theorem of *Smirnov*,  $F \in N^+$  and  $F^* \in L^p_{2\pi}$  together imply that  $F \in \mathcal{H}^p_{\mathbb{C}}$ .
- Moreover  $u \in \mathcal{H}^1_{\mathbb{R}}$  if and only if  $u + i\mathcal{C}u = U^*$  for some  $U \in \mathcal{H}^1_{\mathbb{C}}$ .

# Equation ( A)

Theorem

Let  $u, v, \psi$  be a solution of the Bernoulli problem and let  $\varphi$  be a harmonic conjugate of  $-\psi$ . Then  $\varphi + i\psi$  is an injective conformal mapping of  $\Omega$  onto the open lower half-plane which has an extension as a homeomorphism from  $\overline{\Omega}$  onto the closed lower half-plane. Let Z be its inverse. Then  $t \mapsto Z(iy - t)$  is an absolutely continuous parametrization of the streamline  $\{(X,Y): \psi(X,Y) = y\}$  for all  $y \leq 0$ . Let

$$w(t) = \operatorname{Im} Z(-t), \quad t \in \mathbb{R}$$

Then  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  satisfies

$$\lambda(w)\{{w'}^2 + (1 + \mathcal{C}w')^2\} = 1.$$
 (A)

Moreover  $1/W \in N^+$  where  $W \in \mathcal{H}^1_{\mathbb{C}}$  is such that  $W^* = w' + i(1 + \mathcal{C}w').$ 

# Equation (B)

The extent to which this equation is equivalent to

$$\lambda(w)(1 + \mathcal{C}w') + \mathcal{C}(\lambda(w)w') = 1,$$
(B)

is less obvious.

Equation (B) is the Euler-Lagrange equation of the functional

$$\mathcal{J}(w) = \int_{-\pi}^{\pi} \left\{ \Lambda(w) \left( 1 + \mathcal{C}w' \right) - w \right\} dt, \quad w \in \mathcal{H}_{\mathbb{R}}^{1,1},$$

which has a natural physical interpretation, when  $\Lambda$  is a primitive of  $\lambda$ 

#### Theorem

For  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  let  $W \in \mathcal{H}^{1}_{\mathbb{C}}$  be such that  $W^* = w' + i(1 + \mathcal{C}w')$ . Then the following are equivalent.

٠

## The Key

Riemann-Hilbert Theory

Euler-Lagrange equation (B)  $\lambda(w)(1 + Cw') + C(\lambda(w)w') = 1$ can be written in complex form as

$$\lambda(w)w' + i(-1 + \mathcal{C}(\lambda(w)w')) = \lambda(w)w' - i\lambda(w)(1 + \mathcal{C}w')$$

In other words, if

$$V^* = \lambda(w)w' + i(-1 + \mathcal{C}(\lambda(w)w'))$$
 and  $W^* = w' + i(1 + \mathcal{C}w')$ 

then

$$V^* = \lambda(w)\overline{W}^*$$

Therefore  $V^*W^* = \lambda(w)|W^*|^2$ . Hence, since VW is the Poisson's integral of its boundary data, and the Poisson kernel is smooth, then VW is a real-valued holomorphic function. Hence, by Cauchy-Riemann equations it is a constant. Hence

$$\lambda(w)\{{w'}^2 + (1 + \mathcal{C}w')^2\} = \lambda(w)|W^*|^2 = \text{const}$$

which gives  $(\mathbf{A})$ 

Caveat

Let  $V = W : D \to \mathbb{C}$  be the holomorphic functions defined by

$$V(z) = W(z) = \frac{1 - iz}{z - i} = \left(\frac{1 - iz}{z - i}\right) \left(\frac{\overline{z} + i}{\overline{z} + i}\right)$$
$$= \frac{\overline{z} + z + i(1 - |z|^2)}{|z - i|^2}$$

Thus  $V^* = \overline{V}^*$  but VW is not a constant. The key result is

#### Theorem

Suppose  $V, W \in \mathcal{H}^1_{\mathbb{C}}$  and  $V^* = a\overline{W}^*$  where a is a bounded measurable function on  $\partial D$ . Then the following are equivalent.

## More about (B)

$$\lambda(w) \big( 1 + \mathcal{C}w' \big) + \mathcal{C} \big( \lambda(w)w' \big) = 1$$

is the Euler-Lagrange equation of

$$\mathcal{J}(w) = \int_{-\pi}^{\pi} \left\{ \Lambda(w) \left( 1 + \mathcal{C}w' \right) - w \right\} dt, \quad w \in \mathcal{H}_{\mathbb{R}}^{1,1}$$

Also it can be rewritten

$$2\lambda(w)\mathcal{C}w' = 1 - \lambda(w) + \boxed{\lambda(w)\mathcal{C}w' - \mathcal{C}(\lambda(w)w')}$$
$$= 1 - \lambda(w) + \boxed{\mathcal{F}(w)}$$

Note that  $w \mapsto \mathcal{C}w'$  is first order and self-adjoint, with Fourier multipliers  $|k|, k \in \mathbb{Z}$ .

Moreover  $\mathcal{F}$  is a smoothing operator, in fact:

#### Theorem

Suppose that  $\Lambda$  is convex and  $\lambda = \Lambda'$ . Then  $\mathcal{F}(u)(x) \ge 0$  almost everywhere. (Moreover,  $\mathcal{F}$  is smoothing)

Proof. Let

$$G(u)(x,y) = \Lambda(u(y)) - \Lambda(u(x)) - \lambda(u(x))(u(y) - u(x))$$

 $G \geq 0$  because  $\Lambda$  is convex. Therefore,

$$\lambda(u(x))\mathcal{C}u'(x) - \mathcal{C}(\lambda(u)u')(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(\lambda(u(x)) - \lambda(u(y)))u'(y)}{\tan((x-y)/2)} dy$$
$$= \frac{-1}{2\pi} \int_{-\pi}^{\pi} \frac{(\partial/\partial y)G(u)(x,y)}{\tan((x-y)/2)} dy = \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{G(u)(x,y)}{\sin^2((x-y)/2)} dy \ge 0.$$

### Smoothing

Suppose  $\lambda$  is smooth. Then

•  $u \in W_{2\pi}^{1,2} \Rightarrow \mathcal{F}(u) \in L_{2\pi}^{\infty}$  and sequentially continuous from the weak  $W^{1,2}2\pi$ -topology, into  $L_{2\pi}^p$ ,  $1 \le p < \infty$ , with the strong  $L_p$ -topology.

• If 
$$u \in W_{2\pi}^{1,p}$$
 for  $2 . Then  $\mathcal{F}(u) \in C^{1-\frac{2}{p}}$ .$ 

$$\blacktriangleright \ u \in C1^{\alpha}, \ \alpha \in (0,1) \Rightarrow \mathcal{F}(u) \in C^{1,\delta}, \ 0 < \delta < \alpha.$$

So if  $\lambda \neq 0$ , a bootstrap gives  $u \in C^{\infty}$ . Then an independent argument gives that u is real-analytic because  $\lambda$  is real-analytic.

# Equation (B) and Bernoulli free boundaries Theorem

We have observed that every Bernoulli free boundary gives a solution w of

$$\lambda(w)\{{w'}^2 + (1 + \mathcal{C}w')^2\} = 1$$
 ((A))

In addition it follows that

$$\left.\begin{array}{c}w \text{ satisfies (B);}\\\lambda(w) \ge 0;\\t\mapsto (-(t+\mathcal{C}w(t)),w(t)) \text{ injective on } \mathbb{R}.\end{array}\right\}$$
(C)

Conversely, suppose that  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  satisfies (C). Let

$$\mathcal{S} = \{ (-(t + \mathcal{C}w(t)), w(t)) : t \in \mathbb{R} \}$$

and let  $\Omega$  be the open domain below S. There exists a conformal mapping  $\omega$  of  $\Omega$  onto  $\mathbb{C}^-$  such that S gives a solution of a Bernoulli free boundary problem.

### Correspondence

There is a one-to-one correspondence between solutions of Bernoulli free boundary problems with  $|\nabla \psi|$  bounded and solutions  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  of (**C**)

The question is: can we say when a solution of  $(\mathbf{B})$  satisfies  $(\mathbf{C})$ 

 $t_0$  is called a stagnation point when  $\lambda(w(t_0)) = 0$ , and solutions with stagnation points are called singular. The set  $\mathcal{N}(w)$  of stagnation points is closed.

If

$$\lambda \ge 0$$
,  $\log \lambda$  is non-constant, concave, and  
 $\lambda' \le 0$  where  $\lambda \ne 0$  on  $\mathcal{R}(w)$ ,

a solution of  $(\mathbf{B})$  defines a non-self-intersecting curve S and S is a Bernoulli free boundary provided w has at most countably many stagnation points.

#### Duality

#### Recall equation $(\mathbf{B})$ in the form

$$\lambda(w)w' + i(-1 + \mathcal{C}(\lambda(w)w')) = \lambda(w) \left(w' - i(1 + \mathcal{C}w')\right)$$

which can be re-written

$$-(w'+i(1+\mathcal{C}w')) = \frac{1}{\lambda(w)} \Big( -\lambda(w)w' - i(1+\mathcal{C}(-\lambda(w)w')) \Big)$$
$$= \frac{1}{\lambda(w)} \Big( v' - i(1+\mathcal{C}(v')) \Big)$$

where  $v = -\lambda(w)$ . Suppose that  $\lambda(w) \ge 0$  so that (A) holds also.

Let 
$$\widetilde{w}(t) = -\int_0^t \lambda(w(x))w'(x)dx$$
 and  $\lambda(w(t))\widetilde{\lambda}(\widetilde{w}(t)) \equiv 1$ 

Then  $\widetilde{w}(t) = -\int_0^t \lambda(w(x))w'(x)dx$  is a solution of (A) and (B) with  $\widetilde{\lambda}$  instead of  $\lambda$ 

#### Dual Stokes Waves

The Stokes wave free boundary conditions are that the harmonic stream function satisfy

$$\psi \equiv 0$$
 and  $|\nabla \psi|^2 + 2gy \equiv 1$  on  $\mathcal{S}$ 

The dual problem corresponds to to a free-boundary problem for the "dual stream function"  $\widetilde{\psi}$ :

$$\widetilde{\psi} \equiv 0, \quad (4gy+1)|\nabla\widetilde{\psi}|^4 \equiv 1$$

at the "dual" free boundary  $\widetilde{\mathcal{S}}$ 

These two apparently distinct Bernoulli problems are equivalent

## Self-Duality

An example

It is natural to ask if there are  $\lambda$  s such that  $\widetilde{\lambda} \equiv \lambda$ . Consider the case  $\lambda \in C(\mathbb{R}), \ \lambda(v) > 0, \forall v \in \mathbb{R}.$ 

#### Theorem

(i) Suppose  $f:[0,+\infty) \to [0,+\infty)$  is continuously differentiable, f(0) = 0, f' > 0, and f'(0) = 1. Let

$$\Lambda(w) = \begin{cases} f(w), & \text{if } w \ge 0, \\ -f^{-1}(-w), & \text{if } w < 0. \end{cases}$$
(2)

Then  $\lambda = \Lambda'$  is self-dual. (ii) Conversely, if  $\lambda$  is self-dual, then  $\Lambda(w) := \int_0^w \lambda(v) dv, \quad w \in \mathbb{R}$ 

has the form (2).

## Regularity of Solutions of $(\mathbf{B})$

Without hypotheses on sign of  $\lambda(w)$  we observe how  $\lambda(w) \neq 0$  relates to the regularity of solutions w of (**B**).

#### Theorem

When  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  is a solution of (**B**)

$$\blacktriangleright \log |\lambda(w)| \in L^1_{2\pi}$$

•  $\lambda(w) > 0$  on a set of positive measure

• w is real-analytic on the open set of full measure  $\lambda(w) \neq 0$ 

As a corollary, if S,  $\psi$  is a Bernoulli free boundary, then

- S and ψ are real-analytic in a neighbourhood of any point of S that is not a stagnation point,
- $\nabla \psi$  is continuous in the closure of  $\Omega$

#### How zeros of $\lambda$ affects the smoothness of w

Let  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  be a solution of (**B**). Suppose that  $\rho > 0$  is such that for all  $x_0 \in \mathcal{R}(w)$  with  $\lambda(x_0) = 0$ ,

$$|\lambda(x)| \leq \text{constant } |x - x_0|^{\varrho} \text{ for all } x \in \mathcal{R}(w).$$

Let

$$p(\varrho) = \frac{\varrho+2}{\varrho}$$
 and  $r(\varrho) = \frac{\varrho+2}{\varrho+1}$ .

(a) The following are equivalent:

(i) 
$$w \in W_{2\pi}^{1,p(\varrho)}$$
 ( $w \in W_{2\pi}^{1,3}$  if  $\lambda$  is Lipschitz);  
(ii)  $w$  is real-analytic on  $\mathbb{R}$ ;  
(iii)  $\lambda(w) > 0$  on  $\mathbb{R}$ .

#### (b) The function w is real-analytic if

 $\lambda(w) \ge 0 \text{ and } -(1 + \mathcal{C}w') + iw' = \left| -(1 + \mathcal{C}w') + iw' \right| e^{i\vartheta},$ where  $\vartheta = \vartheta_1 + \vartheta_2$  with  $\vartheta_1$  continuous and  $\|\vartheta_2\|_{\infty} < \pi/(2p(\rho))$ .  $(\|\vartheta_2\|_{\infty} < \pi/6 \text{ if } \lambda \text{ is Lipschitz})$ (c) If  $w \in W^{1,r(\varrho)}_{2\pi}$  then  $\lambda(w) \ge 0$  ( $w \in W^{1,3/2}_{2\pi}$  if  $\lambda$  is Lipschitz) (d) If  $\rho = 0$ , which amounts to no additional hypothesis since  $\lambda$ is continuous and  $\mathcal{R}(w)$  is compact, then  $\lambda(w) \geq 0$  if  $w \in W^{1,2}_{2\pi}$ . It is not known whether there are solutions of  $(\mathbf{B})$  which do not satisfy (A) for which  $\lambda(w)$  changes sign. There are however solutions w of (A) and (B) for which  $\lambda(w)$ 

has zeros - the famous Stokes waves

#### Dimension of the Set of Stagnation Points

It follows from Theorem 7 that  $\mathcal{N}(w)$  has measure 0. The following result implies that its dimension is not greater than 2/3 if  $\lambda$  is Lipschitz continuous. Note that the lower Minkowski dimension dim<sub>M</sub>, bounds the Hausdorff dimension from above.

#### Theorem

Let  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  be a solution of (A) and (B) where  $\lambda$  is such that

$$|x - x_0|^{\varrho} \le \lambda(x) \le C|x - x_0|^{\varrho}, \ c, C, \ \varrho > 0,$$

for all x in a neighbourhood of  $x_0$  in  $\mathcal{R}(w)$  when  $\lambda(x_0) = 0$ . Let  $q(\varrho) = (\varrho + 2)/2$ . Then

$$\dim_M \mathcal{N}(w) \le 1/q(\varrho).$$

If  $w \in W_{2\pi}^{1,p}$ , p > 1, then  $\dim_M \mathcal{N}(w) \le 1 - (p/p(\varrho)), \quad 1$ 

## Jordan Curves

We would like to use the functional  $\mathcal{J}$  and its Euler-Lagrange equation (**B**), without further qualification to study Bernoulli free-boundary problems. Suppose

$$\lambda \ge 0$$
,  $\log \lambda$  is non-constant, concave, and  
 $\lambda' \le 0$  where  $\lambda \ne 0$  on  $\mathcal{R}(w)$ 

and w, a solution of (**B**), has at most countably many stagnation points. Let

$$\vartheta = \mathcal{C} \big( \log \sqrt{\lambda(w)} \big)$$

#### Theorem

If  $w \in \mathcal{H}_{\mathbb{R}}^{1,1}$  satisfies (**A**) and (**B**), then  $\sqrt{\lambda(w)} w' = \sin \vartheta$  and  $\sqrt{\lambda(w)}(1 + \mathcal{C}w') = \cos \vartheta$  (3) and  $\vartheta(t) \in (-\pi/2, \pi/2)$ . Hence  $1 + \mathcal{C}w' > 0$ , almost everywhere. For smooth functions  $1 + \mathcal{C}w' > 0$  everywhere.

### Important Open Question

The hypotheses of this theorem on  $\lambda$  are valid when  $\lambda(w) = 1 - 2gw$  for any g > 0.

Unfortunately even in that case it is not known whether the requirement that  $\mathcal{N}(w)$  be denumerable is necessary.

In fact no examples are known in which  $\mathcal{N}(w) \cap [0, 2\pi)$  contains more than one point when  $w \in \mathcal{H}^{1,1}_{\mathbb{R}}$  satisfies (**A**) and (**B**).

Can a solution w of (A) and (B) have uncountably many stagnation points?