Uniqueness for the ∞ -eigenvalue problem

by Marino Belloni (Parma)

Abstract: In this talk I consider the first eigenvalue (and the corresponding first eigenfunctions) of the ∞ -Laplacian operator Δ_{∞} (see Aronsson (1966)). First I obtain in a new way the ∞ -eigenvalue equation

 $\min\{|\nabla u|(x) - \Lambda_{\infty} u(x); -\Delta_{\infty} u(x)\} = 0, \quad x \in \Omega$

(already obtained, by means of a "viscosity" approach, by Juutinen, Lindqvist and Manfredi (1999)), then I discuss some qualitative properties of the first eigenfunctions and, finally, I show for a class of domains $\Omega \subseteq \Re^n$ the uniqueness of the first eigenfunction in the viscosity sense.

The simplicity of the first eigenvalue for every domain $\Omega \subseteq \Re^n$ was already known for $p \in (0, \infty)$ (see Lindqvist (1985); see also a joint work with Bernhard Kawohl (2002) for a different proof).

The results presented in this talk are part of a joint work with Alfred Wagner (Aachen).