Geometry beyond limits

Bernd Kawohl, Cologne

Abstract: In my lecture I report on various limit problems involving the *p*-Laplace and related operators as $p \to \infty$ and $p \to 1$. The limit problems lead to interesting geometrical questions. One of the results says that the first (and positive) eigenvalue λ_p and eigenfunction u_p of

$$\Delta_p u + \lambda_p |u_p|^{p-2} u_p = 0 \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial\Omega,$$

converge to the Cheeger constant $\lambda_1 = h(\Omega)$ and a function u_1 amost all of whose level sets $\{u_1 > t\}$ are Cheeger sets of Ω , i.e. they minimize the ratio of perimeter over volume among all subsets of Ω . Cheeger sets are interesting geometrical objects. These and related results were obtained in part with my coauthors M.Belloni, V. Ferone, V.Fridman, P.Juutinen and T. Lachand-Robert.

Another result (with H.Shahgholian) deals with minimizers u_p of the functional

$$E_p(v) = \int_{\mathbb{R}^n} \frac{1}{p} |\nabla v|^p + \frac{p-1}{p} \chi_{\{v>0\}} \, dx$$

(among $v \in W^{1,p}(\mathbb{R}^n)$ and with $v \equiv 1$ on K) as $p \to 1$ or $p \to \infty$. They are *p*-harmonic in their support (minus K) and satisfy $u_p = 0$ as well as Bernoulli's condition $|\nabla u_p| = 1$ on the free boundary of their support. For p = 1 this free boundary minimizes surface area among all sets that contain K, and for $p \to \infty$ the support minimizes volume among all sets containing a 1-neighbourhood of K.

Finally I present a family of operators A_p with the properties that $A_p = \frac{1}{p}A_1 + \frac{p-1}{p}A_{\infty}$ is a convex combination of A_1 and A_{∞} and that $u_t - A_p u = 0$ includes physically relevant equations such as the heat equation and the equation for mean curvature flow $u_t - |\nabla u| \operatorname{div} (\nabla u/|\nabla u|) = 0$. This may be yet another way to say caloric.